Skip to main content
Log in

Experimental setup of field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

An experiment, focusing on the effects of chronically enhanced O3 regimes on young beech (Fagus sylvatica) and on the microbial rhizosphere community structure, was conducted from November 2002 to August 2006 in eight field lysimeters at the Helmholtz Zentrum München. The instrumentations of the lysimeters enabled the establishment of the water balance in the unsaturated zone and the assessment of the water uptake by plants. Further, the containment provided by the lysimeters made it possible to apply a root rot pathogen infection without contaminating the surrounding soil. A free-air fumigation system allowed to double the O3 concentration in the air above four lysimeters relative to the ambient air. To avoid damage of the leaves the maximum O3 concentration was limited to 150 nL L−1. For nearly 70% of the time the set-point concentration was reached within 10%. In the final harvest the whole soil column was retrieved and a nearly complete data-set of above-ground and below-ground parameters became available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228, doi:10.1046/j.1469-8137.2003.00674.x

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964, doi:10.1111/j.1365-3040.2005.01341.x

    Article  CAS  Google Scholar 

  • Benton J, Fuhrer J, Gimeno BS, Skärby L, Palmer-Brown D, Ball G, Roadknight C, Mills G (2000) An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agric Ecosyst Environ 78:19–30, doi:10.1016/S0167-8809(99)00107-3

    Article  CAS  Google Scholar 

  • Calatayud A, Alvarado JW, Barreno E (2002) Effects of ozone concentration on cabbage (Brassica oleracea L.) in a rural mediterranean environment. Phyton 42:29–33

    CAS  Google Scholar 

  • Castagna A, Nali C, Ciompi S, Lorenzini G, Soldatini GF, Ranieri A (2001) Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytol 152:223–229, doi:10.1046/j.0028-646X.2001.00253.x

    Article  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  • Esperschütz J, Gattinger A, Buegger F, Lang H, Munch JC, Schloter M, Winkler JB (2009a) A continuous labelling approach to recover photosynthetically fixed carbon in plant tissue and rhizosphere organisms of young beech trees (Fagus sylvatica L.) using stable isotopes technology. Plant Soil (this issue)

  • Esperschütz J, Pritsch K, Gattinger A, Winkler JB, Buegger F, Munch JC, Schloter M (2009b) Influence of chronic ozone stress on carbon translocation processes into rhizosphere microbial communities of beech trees (Fagus sylvatica L.) during a growing season. Plant Soil (in press)

  • Fleischmann F, Schneider D, Matyssek R, Oßwald W (2002) Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biol 4:144–152, doi:10.1055/s-2002–25728

    Article  Google Scholar 

  • Fleischmann F, Göttlein A, Rodenkirchen H, Lütz C, Oßwald W (2004) Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. undulata. For Path 34:79–92

    Article  Google Scholar 

  • Fleischmann F, Koehl J, Portz R, Beltrame AB, Oßwald W (2005) Physiological changes of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin “citricolin” to pathogenesis. Plant Biol 7:650–658, doi:10.1055/s-2005-872891

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann F, Winkler JB, Oßwald WF (2009) Effects of ozone and Phytophthora citricola on non-structural carbohydrates of European beech (Fagus sylvatica) saplings. Plant Soil, doi:10.1007/s11104-009-9927-y

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154, doi:10.1016/S0160-4120(02)00157-5

    Article  CAS  PubMed  Google Scholar 

  • Gayler S, Klier C, Müller CW, Weiss W, Winkler JB, Priesack E (2009) Analysing the role of soil properties, intitial biomass and ozone on observed variability of plant growth in a lysimeter study. Plant Soil (this issue)

  • Hendrey GR, Lewin K, Nagy J (1993) Control of carbon dioxide in unconfined field plots. In: Schulze E-D, Mooney HA (eds) Design and execution of experiments on CO2 enrichment, vol. 6. Commision of the European Communities, Brussels, pp 309–326

    Google Scholar 

  • Karnosky DF, Gielen B, Ceulemans R, Schlesinger WH, Norby RJ, Oksanen E, Matyssek R, Hendrey GR (2001) FACE systems for studying the impacts of greenhouse gases on forest ecosystem. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza G, Innes JL (eds) The impact of carbon dioxide and other greenhouse gases on forest ecosystems Report No3 of the IUFRO task force on environmental change. CAB International, Oxon, NY, pp 297–324

    Chapter  Google Scholar 

  • Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981, doi:10.1111/j.1365-3040.2005.01362.x

    Article  CAS  Google Scholar 

  • Karnosky DF, Werner H, Holopainen T, Percy KE, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190, doi:10.1055/s-2006-955915

    Article  CAS  PubMed  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–636, doi:10.1111/j.1469-8137.2005.01557.x

    Article  CAS  PubMed  Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–393, doi:10.1016/S0269-7491(01)00228-7

    Article  CAS  Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing season. Glob Change Biol 11:1387–1401, doi:10.1111/j.1365-2486.2005.00993.x

    Article  Google Scholar 

  • Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196, doi:10.1111/j.1469-8137.2005.01391.x

    Article  PubMed  Google Scholar 

  • Kreutzer K, Bittersohl J (1986) Untersuchungen über die Auswirkungen des sauren Regens und der kompensatorischen Kalkung im Wald. Forstwiss Centbl 105:273–282, doi:10.1007/BF02741727

    Article  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees (Berl) 20:539–548, doi:10.1007/s00468-006-0069-z

    Article  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649, doi:10.1055/s-2005-872902

    Article  CAS  PubMed  Google Scholar 

  • Luster J, Menon M, Hermle S, Schulin R, Günthardt-Goerg MS, Nowack B (2008) Initial changes in refilled lysimeters built with metal polluted topsoil and acidic or calcareous subsoils as indicated by changes in drainage water composition. Water Air Soil Pollut Focus 8:163–176

    Article  CAS  Google Scholar 

  • Manning WJ (2005) Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest progress and an experimental approach. Environ Pollut 137:443–454, doi:10.1016/j.envpol.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387, doi:10.1126/science.1089543

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R (2001) How sensitive is birch to ozone? Responses in structure and function. J For Sci 47:8–20

    Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: An ecophysiological perspective. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany, vol. 64. Springer, Berlin, pp 349–404

    Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580, doi:10.1055/s-2005-872981

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment—experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180, doi:10.1055/s-2007-964883

    Article  CAS  PubMed  Google Scholar 

  • Meissner R, Rupp H, Seyfahrt M (2008) Advances in out door lysimeter techniques. Water Air Soil Pollut Focus 8:217–225, doi:10.1007/s11267-007-9166-2

    Article  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-Air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119

    CAS  Google Scholar 

  • Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lutz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506, doi:10.1016/j.envpol.2005.01.036

    Article  CAS  PubMed  Google Scholar 

  • Nunn AJ, Wieser G, Reiter IM, Häberle K-H, Grote R, Havranek WM, Matyssek R (2006) Testing the unifying theory of ozone sensitivity with mature trees of Fagus sylvatica and Picea abies. Tree Physiol 26:1391–1403

    CAS  PubMed  Google Scholar 

  • Oksanen E, Kontunen-Soppela S, Riikonen J, Peltonen P, Uddling J, Vapaavuori E (2007) Northern environment predisposes birches to ozone damage. Plant Biol 9:191–196, doi:10.1055/s-2006-924176

    Article  CAS  PubMed  Google Scholar 

  • Oßwald W, Koehl J, Heiser I, Nechtwatal J, Fleischmann F (2004) New insights in the genus Phytophthora and current diseases these pathogens cause in their ecosystem. In: Esser K, Lüttger U, Beyschlag W, Murata J (eds) Progress in botany, vol. 65. Springer, Berlin, pp 436–466

    Google Scholar 

  • Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal respones. Environ Pollut 137:483–493, doi:10.1016/j.envpol.2005.01.035

    Article  CAS  PubMed  Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung F, Adamsen FJ, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201, doi:10.1078/1439-1791-00053

    Article  CAS  Google Scholar 

  • Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133:1–9, doi:10.1007/s00442-002-1008-3

    Article  Google Scholar 

  • Pritsch K, Ernst D, Fleischmann F, Gayler S, Grams TEE, Göttlein A, Heller W, Koch N, Lang H, Matyssek R, Munch JC, Olbrich M, Scherb H, Stich S, Winkler JB, Schloter M (2008) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut Focus 8:139–154, doi:10.1007/s11267-007-9164-4

    Article  CAS  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    CAS  PubMed  Google Scholar 

  • Reth S, Graf W, Gefke O, Schilling R, Seidlitz HK, Munch JC (2008) Whole-year-round observation of N2O profiles in soil: a lysimeter study. Water Air Soil Pollut Focus 8:129–137, doi:10.1007/s11267-007-9165-3

    Article  CAS  Google Scholar 

  • Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08. The Royal Society, London, p 132

    Google Scholar 

  • Samuelson L, Kelly JM (2001) Scaling ozone effects from seedlings to forest trees. New Phytol 149:21–41, doi:10.1046/j.1469-8137.2001.00007.x

    Article  CAS  Google Scholar 

  • Schloter M, Winkler JB, Aneja M, Fleischmann F, Pritsch K, Heller W, Stich S, Grams TEE, Göttlein A, Matyssek R, Munch J-C (2005) Short-term effects of ozone on the plant–rhizosphere–bulk soil system of young beech trees. Plant Biol 7:728–736, doi:10.1055/s-2005-872987

    Article  CAS  PubMed  Google Scholar 

  • Seyfahrt M, Reth S (2008) Lysimeter Soil Retriever (LSR)—an application of a new technique for retrieving soils from lysimeters. Water Air Soil Pollut Focus 8:227–231, doi:10.1007/s11267-007-9161-7

    Article  Google Scholar 

  • Unhold VG, Fank J (2008) Modular design of field lysimeters for specific applications needs. Water Air Soil Pollut Focus 8:233–242

    Article  Google Scholar 

  • Volk M, Geissmann M, Blatter A, Contat F, Fuhrer J (2003) Design and performance of a free-air exposure system to study long-term effects of ozone on grasslands. Atmos Environ 37:1341–1350, doi:10.1016/S1352-2310(02)01012-9

    Article  CAS  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation of mature trees: A novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:117–121, doi:10.1007/BF02987458

    Article  Google Scholar 

  • Winkler JB, Fleischmann F, Gayler S, Scherb H, Matyssek R, Grams TEE (2009) Do chronic aboveground D3 exposure and belowground pathogen stress affect growth and belowground biomass partitioning of juvenile beech trees (Fagus sylvatica L.)? Plant Soil (this issue)

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162, doi:10.1111/j.1365-3040.2007.01717.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by the German Research foundation (DFG) through the ‘Sonderforschungsbereich’ (SFB) 607. The authors would like to thank H.-D. Payer for his engagement to realise the experiment and O. Gefke, P. Bader, D. Schneider, M. Kugelmann and the technical staff from the Department of Environmental Engineering for their valuable support during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Barbro Winkler.

Additional information

Responsible Editor: Per Ambus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, J.B., Lang, H., Graf, W. et al. Experimental setup of field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil 323, 7–19 (2009). https://doi.org/10.1007/s11104-009-9936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9936-x

Keywords

Navigation