Skip to main content
Log in

Effects of ozone and Phytophthora citricola on non-structural carbohydrates of European beech (Fagus sylvatica) saplings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A lysimeter study was performed to monitor long term effects of chronic ozone enrichment on saplings of European beech (Fagus sylvatica L). After 3 years of ozone exposure a root infection with Phytophthora citricola Swada was established in the fourth year to study the interaction between elevated ozone and the root infection on the carbon budget of beech saplings. By using quantitative PCR no differences in root infection with P. citricola were observed between the ozone treatments. In contrast to the first 3 years of ozone exposure, sucrose and starch concentrations in leaves were diminished in ozone treated plants in the fourth year. The root infection reduced sucrose concentrations in leaves. Starch reserves of the heterotrophic biomass were not affected by any treatments. Thus 4 years of ozone exposure and 1 year of P. citricola root infection had only limited effect on carbohydrate metabolism in beech saplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228 doi:10.1046/j.1469-8137.2003.00674.x

    Article  CAS  Google Scholar 

  • Bahnweg G, Heller W, Stich S et al (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669 doi:10.1055/s-2005-872943

    Article  CAS  PubMed  Google Scholar 

  • Blumenröther MC, Low M, Matyssek R, Osswald W (2007) Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O-3 fumigation. Plant Biol 9:207–214 doi:10.1055/s-2006-924565

    Article  PubMed  CAS  Google Scholar 

  • Böhm J, Hahn A, Schubert R et al (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophora infestans and Phytophthora citricola in their respective host plants. J Phytopathol 147:409–416 doi:10.1111/j.1439-0434.1999.tb03842.x

    Article  Google Scholar 

  • Eschrich W, Fromm J (1994) Evidence for 2 pathways of phloem loading. Physiol Plant 90:699–707 doi:10.1111/j.1399-3054.1994.tb02526.x

    Article  Google Scholar 

  • Fenn ME, Dunn PH, Wilborn R (1990) Black stain root disease in ozone-stressed ponderosa pine. Plant Dis 74:426–430 doi:10.1094/PD-74-0426

    Article  CAS  Google Scholar 

  • Fleischmann F, Schneider D, Matyssek R, Oßwald WF (2002) Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biol 4:144–152 doi:10.1055/s-2002-25728

    Article  Google Scholar 

  • Fleischmann F, Göttlein A, Rodenkirchen H et al (2004) Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulata. For Pathol 34:79–92

    Google Scholar 

  • Fleischmann F, Koehl J, Portz R et al (2005) Physiological change of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin “Citricolin” to pathogenesis. Plant Biol 7:650–658 doi:10.1055/s-2005-872891

    Article  CAS  PubMed  Google Scholar 

  • Gamalei Y (1991) Phloem loading and its development related to plant evolution from trees to herbs. Trees Structure Funct 5:50–64

    Google Scholar 

  • Hoch G, Richter A, Korner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081 doi:10.1046/j.0016-8025.2003.01032.x

    Article  CAS  Google Scholar 

  • Jung T, Blaschke H, Neumann P (1996) Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur J Forest Pathol 26:253–272 doi:10.1111/j.1439-0329.1996.tb00846.x

    Article  Google Scholar 

  • Jung T, Blaschke H, Osswald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718 doi:10.1046/j.1365-3059.2000.00521.x

    Article  Google Scholar 

  • Jung T, Hudler G, Jensen-Tracy S et al (2005) Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist 19:159–166 doi:10.1017/S0269915X05004052

    Article  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS et al (2005) Tropospheric O-3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–635 doi:10.1111/j.1469-8137.2005.01557.x

    Article  CAS  PubMed  Google Scholar 

  • Leininger TD, Winner WE, Alexander SA (1990) Root disease incidence in eastern white-pine plantations with and without symptoms of ozone injury in the Coweeta Basin of North-Carolina. Plant Dis 74:552–554 doi:10.1094/PD-74-0552

    Article  Google Scholar 

  • Liu WP, Kozovits AR, Grams TEE et al (2004) Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech. Tree Physiol 24:1045–1055

    CAS  PubMed  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen on juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649 doi:10.1055/s-2005-872902

    Article  CAS  PubMed  Google Scholar 

  • Manning WJ, v Tiedemann A (1995) Climate change: potential effects of increased atmospheric Carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245

    Article  CAS  PubMed  Google Scholar 

  • Matheron ME, Mircetich SM (1985) Pathogenicity and relative virulence of Phytophthora spp from walnut and other plants to rootstocks of English walnut trees. Phytopathology 75:977–981 doi:10.1094/Phyto-75-977

    Article  Google Scholar 

  • Maurel M, Robin C, Capron G, Desprez-Loustau ML (2001) Effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. For Pathol 31:353–369

    Google Scholar 

  • Meleux F, Solmon F, Giorgi F (2007) Increase in summer European ozone amounts due to climate change. Atmos Environ 41:7577–7587 doi:10.1016/j.atmosenv.2007.05.048

    Article  CAS  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, Jena

    Google Scholar 

  • Nunn AJ, Kozovits AR, Reiter IM et al (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506 doi:10.1016/j.envpol.2005.01.036

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Bytnerowicz A, Andersen C et al (2007) Impacts of air pollution and climate change on forest ecosystems—emerging research needs. ScientificWorldJournal 7:1–8

    CAS  PubMed  Google Scholar 

  • Pritsch K, Ernst D, Fleischmann F et al (2008) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut Focus 8:139–154 doi:10.1007/s11267-007-9164-4

    Article  CAS  Google Scholar 

  • Racherla PN, Adams PJ (2008) The response of surface ozone to climate change over the Eastern United States. Atmos Chem Phys 8:871–885

    CAS  Google Scholar 

  • Samuelson L, Kelly JM (2001) Scaling ozone effects from seedlings to forest trees. New Phytol 149:21–41 doi:10.1046/j.1469-8137.2001.00007.x

    Article  CAS  Google Scholar 

  • Schloter M, Winkler JB, Aneja M et al (2005) Short term effects of ozone on the plant–rhizosphere–bulk soil system of young beech trees. Plant Biol 7:728–736 doi:10.1055/s-2005-872987

    Article  CAS  PubMed  Google Scholar 

  • Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: A European perspective. In: 3rd new phytologist symposium on major biological issues resulting from anthropogenic disturbance of the nitrogen cycle, Lancaster, England, pp 109–122

  • Tsao P, Guy S (1977) Inhibition of Mortierella and Pythium in a Phytophthora-isolation medium containing hymexazol. Phytopathology 67:796–801

    Article  CAS  Google Scholar 

  • Turgeon R (2006) Phloem loading: how leaves gain their independence. Bioscience 56:15–24 doi:10.1641/0006-3568(2006)056[0015:PLHLGT]2.0.CO;2

    Article  Google Scholar 

  • Wang ZY, Göttlein A, Rodenkirchen H et al (2003) The influence of Phytophthora citricola on rhizosphere soil solution chemistry and the nutritional status of European beech seedlings. J Phytopathol 151:365–368 doi:10.1046/j.1439-0434.2003.00729.x

    Article  CAS  Google Scholar 

  • Winkler JB, Lang H, Graf W, Reth S, Munch JC (2009a) Experimental setup of field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil doi:10.1007/s11104-009-9936-x

  • Winkler JB, Fleischmann F, Gayler S et al (2009b) Do chronic aboveground O3 exposure and belowground pathogen stress affect growth and belowground biomass partitioning of young beech trees (Fagus sylvatica L.)? Plant Soil, submitted

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8:369–387

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is part of the collaborative research centre SFB607 “Growth and Parasite Defence—Competition for Resources in Economic plants from Agronomy and Forestry” funded by the German Research Foundation (DFG). We thank Dr. R. Matyssek, speaker of the SFB607 for his tireless commitment for this lysimeter experiment. We also thank Dr. T.E.E. Grams for the determination of above-ground biomass, used to calculate starch contents. The staff of the Department of Environmental Engineering, especially Dr. H.K. Seidlitz, Dr. H. Lang and O. Gefke are gratefully acknowledged for the technical realisation of the lysimeter experiment. For skilled lab assistance we are grateful to Tina Schmidt and Remigius Hammerl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Fleischmann.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischmann, F., Winkler, J.B. & Oßwald, W. Effects of ozone and Phytophthora citricola on non-structural carbohydrates of European beech (Fagus sylvatica) saplings. Plant Soil 323, 75–84 (2009). https://doi.org/10.1007/s11104-009-9927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9927-y

Keywords

Navigation