Skip to main content
Log in

Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Drought and waterlogging are important abiotic stresses negatively affecting plant growth and development. They are transiently recurring in rainfed lowlands and in water-saving system practicing intermittent irrigation. This study aimed to determine the contribution of plastic development and associated physiological responses of roots to shoot dry matter production under transient soil moisture stresses. To minimize effect of genetic confounding, a selected line (CSSL47) drawn from 54 chromosome segment substitution lines (CSSL) of Nipponbare (japonica type) carrying an overlapping chromosome segments of Kasalath (indica type), was used and compared with the recurrent parent Nipponbare. Under transient droughted-to-waterlogged (D–W) conditions, CSSL47 showed greater shoot dry matter production than Nipponbare. This was due largely to its greater root system development through high induction of aerenchyma formation. Consequently, aerenchyma development effectively facilitated the internal diffusion of oxygen (O2) to the root tips under sudden waterlogged condition supporting rapid recovery of stomatal conductance, transpiration, and photosynthesis. Likewise, CSSL47 showed greater shoot dry matter production than Nipponbare under transient waterlogged-to-droughted (W–D) conditions. This was due to CSSL47’s greater root system development through more initiation of L type lateral roots that effectively maintained soil water uptake. This in turn sustained higher stomatal conductance, transpiration, and photosynthesis. Results implied that utilization of CSSLs could precisely reveal that root plastic development in response to transient soil moisture stresses contributed to the maintenance of shoot dry matter production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSSL:

chromosome segment substitution line

DAS:

days after sowing

D-W:

droughted-to-waterlogged

SMC:

soil moisture content

W–D:

waterlogged-to-droughted

References

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration, and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to radial oxygen loss, Fe+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    Article  CAS  PubMed  Google Scholar 

  • Azhiri-Sigari T, Yamauchi A, Kamoshita A, Wade LJ (2000) Genotypic variation in response of rainfed lowland rice to drought and rewatering. II. Root growth. Plant Prod Sci 3:180–188

    Article  Google Scholar 

  • Bañoc DM, Yamauchi A, Kamoshita A, Wade LJ, Pardales JR Jr (2000a) Genotypic variations in response of lateral root development to fluctuating soil moisture in rice. Plant Prod Sci 3:335–343

    Article  Google Scholar 

  • Bañoc DM, Yamauchi A, Kamoshita A, Wade LJ, Pardales JR Jr (2000b) Genotypic variations in response of lateral root development to fluctuating soil moisture in rice. Plant Prod Sci 3:335–343

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency and yield potential—are they compatible, dissonant and mutually exclusive? Aust J Agr Res 56:1159–1168

    Article  Google Scholar 

  • Bouman BAM, Toung TP (2001) Field water management to save water and increased its productivity in irrigated lowland rice. Agric Water Manag 49:11–30

    Article  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, MacCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Gene 90:969–981

    CAS  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  PubMed  Google Scholar 

  • Eissenstat D (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68

    Article  Google Scholar 

  • Horii H, Nemoto K, Miyamoto N, Harada J (2006) Quantitative trait loci for adventitious and lateral roots in rice. Plant Breed 125:198–200

    Google Scholar 

  • Ingram KT, Bueno FD, Namuco OS, Yambao EB, Beyroury CA (1994) Rice root traits for drought resistance and their genetic variation. In: Kirk CJD (ed) Rice roots: nutrient and water use. International Rice Research Institute, Manila, pp 66–67

    Google Scholar 

  • Ito K, Tanakamaru K, Morita S, Abe J, Inanaga S (2006) Lateral root development, including responses to soil drying, of maize (Zea mays) and wheat (Triticum aestivum) seminal roots. Physiol Plant 127:260–267

    Article  CAS  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Google Scholar 

  • Kamoshita A, Wade LJ, Yamauchi A (2000) Genotypic variation in response of rainfed lowland rice to drought and rewatering. III. Water extraction during the drought period. Plant Prod Sci 3:189–196

    Article  Google Scholar 

  • Kamoshita A, Zhang J, Siopongco J, Sarkarung S, Nguyen HT, Wade LJ (2002a) Effects of phenotyping environment on identification of QTL for rice root morphology under anaerobic conditions. Crop Sci 42:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Wade LJ, Ali MM, Pathan MS, Zhang J, Sarkarung S, Nguyen HT (2002b) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Rodriguez R, Yamauchi A, Wade LJ (2004) Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Prod Sci 7:406–420

    Article  Google Scholar 

  • Kanou M, Inukai Y, Kitano H, Yamauchi A (2007) Quantitative evaluation of contribution of root plasticity to shoot dry matter production by using chromosome segment substitution lines in rice. Jpn J Crop Sci (Extra 1) 76:186–187, in Japanese with English summary

    Google Scholar 

  • Kimura K, Yamasaki S (2001) Root length and diameter measurement using NIH Image: application of the line-intercept principle for diameter estimation. Plant Soil 234:37–46

    Article  CAS  Google Scholar 

  • Kimura K, Kikuchi S, Yamasaki S (1999) Accurate root length measurement by image analysis. Plant Soil 216:117–127

    Article  CAS  Google Scholar 

  • Kobata T, Okuno T, Yamamoto T (1996) Contribution of capacity for soil water extraction and water use efficiency to maintenance of dry matter production in rice subjected to drought. Jpn J Crop Sci 65:652–662

    CAS  Google Scholar 

  • Kono Y, Yamauchi A, Nonoyama T, Tatsumi J, Kawamura N (1987a) A revised experimental system of root–soil interaction for laboratory work. Environ Cont Biol 25:141–151

    Google Scholar 

  • Kono Y, Tomida K, Tatsumi J, Nonoyama T, Yamauchi A, Kitano J (1987b) Effects of soil moisture conditions on the development of root systems of soybean plants (Glycine max Merr.). Jpn J Crop Sci 56:597–607

    Google Scholar 

  • Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15

    Article  CAS  Google Scholar 

  • MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH (2006) Assessing the importance of genotype X environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113:953–964

    Article  CAS  PubMed  Google Scholar 

  • Maricle BR, Lee RW (2007) Root respiration and oxygen flux in salt marsh grasses from different elevational zones. Marine Biol 151:413–423

    Article  Google Scholar 

  • Niones J, Suralta R, Inukai Y, Yamauchi A (2009) Evaluation of functional roles of plastic responses of root system in dry matter production and yield under continuous cycle of transient soil moisture stresses by using chromosome segment substitution lines in rice under field conditions. Jpn J Crop Sci (Extra 1) 78:260–261

    Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agron 41:91–145

    Google Scholar 

  • Pardales JR Jr, Yamauchi A (2003) Regulation of root development in sweetpotato and cassava by soil moisture during their establishment period. Plant Soil 255:201–208

    Article  CAS  Google Scholar 

  • Price AH, Steele KA, Moore BJ, Jones RGW (2002) Upland rice grown in soil filled chambers and exposed to contrasting water-deficit regimes II. Mapping quantitative trait loci for root morphology and distribution. Field Crop Res 76:25–43

    Article  Google Scholar 

  • Raumet C, Urcelay C, Diaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  Google Scholar 

  • Revsbech NP, Pedersen O, Reichart W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fert Soils 29:379–385

    Article  Google Scholar 

  • Schippers P, Olff H (2000) Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply. Plant Ecol 149:219–231

    Article  Google Scholar 

  • Siopongco JDLC, Yamauchi A, Salekdeh H, Bennett J, Wade LJ (2005) Root growth and water extraction responses of doubled-haploid rice lines to drought and rewatering during the vegetative stage. Plant Prod Sci 8:497–508

    Article  Google Scholar 

  • Siopongco JDLC, Yamauchi A, Salekdeh H, Bennett J, Wade LJ (2006) Growth and water use response of doubled haploid rice lines to drought and rewatering during the vegetative stage. Plant Prod Sci 9:141–151

    Article  Google Scholar 

  • Siopongco JDLC, Sekiya K, Yamauchi A, Egdane J, Ismail AM, Wade LJ (2008) Stomatal responses in rainfed lowland rice to partial soil drying; evidence of root signals. Plant Prod Sci 11:28–41

    Article  Google Scholar 

  • Siopongco JDLC, Sekiya K, Yamauchi A, Egdane J, Ismail AM, Wade LJ (2009) Stomatal responses in rainfed lowland rice to partial soil drying; comparison of two lines. Plant Prod Sci 12:17–28

    Article  Google Scholar 

  • Subere JOQ, Bolatete D, Bergantin R, Pardales A, Belmonte JJ, Mariscal A, Sebidos R, Yamauchi A (2009) Genotypic variation in responses of cassava (Manihot esculenta Crantz) to drought and rewatering. I. Root system development. Plant Prod Sci 12:462–474

    Article  Google Scholar 

  • Suralta RR, Yamauchi A (2008) Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ Exp Bot 64:75–82

    Article  CAS  Google Scholar 

  • Suralta RR, Inukai Y, Kitano H, Yamauchi A (2007) Responses in dry matter production, yield and their related developmental and physiological traits of rice genotypes to the cycle of waterlogging and drought under field conditions. Jpn J Crop Sci (Extra 2) 76:262–263

    Google Scholar 

  • Suralta RR, Inukai Y, Yamauchi A (2008a) Genotypic variations in responses of lateral root development to transient moisture stresses in rice cultivars. Plant Prod Sci 11:324–335

    Article  Google Scholar 

  • Suralta RR, Inukai Y, Yamauchi A (2008b) Utilizing chromosome segment substitution lines (CSSLs) for evaluation of root responses under transient moisture stresses in rice. Plant Prod Sci 11:457–465

    Article  Google Scholar 

  • Teal JM, Kanwisher JW (1966) Gas transport in the marsh grass, Spartina alterniflora. J Exp Bot 17:355–361

    Article  CAS  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptation to anaerobic stress. Ann Bot 73:3–20

    Google Scholar 

  • Visser EJW, Bögenmann GM (2003) Measurement of porosity in very small samples of plant tissue. Plant Soil 253:81–90

    Article  CAS  Google Scholar 

  • Wade LJ, Kamoshita A, Yamauchi A, Azhiri-Sigari T (2000) Genotypic variation in response of rainfed rowland rice to drought and rewatering I. Growth and water use. Plant Prod Sci 3:173–179

    Article  Google Scholar 

  • Wang H, Yamauchi A (2006) Growth and function of roots under abiotic stress soils. In: Huang B (ed) Plant–environment interactions, 3rd edn. CRC, Taylor and Francis Group, LLC, New York, pp 271–320

    Google Scholar 

  • Wang H, Inukai Y, Kamoshita A, Wade LJ, Siopongco JDLC, Nguyen H, Yamauchi A (2005) QTL analysis on plasticity in lateral root development in response to water stress in the rice plant. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. The Proceedings of the World Rice Research Conference, Tsukuba, Japan, pp 464–469

  • Wang H, Siopongco JDLC, Wade LJ, Yamauchi A (2009) Fractal analysis on root systems of rice plants in response to drought stress. Environ and Exp Bot 65:338–344

    Article  Google Scholar 

  • Yamauchi A, Kono Y, Tatsumi J (1987) Quantitative analysis on root system structures of upland rice and maize. Jpn J Crop Sci 56:608–617

    Google Scholar 

  • Yamauchi A, Pardales JR Jr, Kono Y (1996) Root system structure and its relation to stress tolerance. In: Ito O, Katayama K, Johansen C, Kumar Rao JVDK, Adu-Gyamfi JJ, Rego TJ (eds) Roots and nitrogen in cropping systems of the semi-arid tropics. JIRCAS, Tsukuba, pp 211–234

    Google Scholar 

  • Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Google Scholar 

Download references

Acknowledgment

We thank Dr. Abdelbagi M. Ismail (International Rice Research Institute, Philippines) for a critical review and useful comments on our manuscript. This research was supported by Grant-in-Aid for Scientific Research (No. 19380011) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamauchi.

Additional information

Responsible Editor: Len Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suralta, R.R., Inukai, Y. & Yamauchi, A. Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses. Plant Soil 332, 87–104 (2010). https://doi.org/10.1007/s11104-009-0275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0275-8

Keywords

Navigation