Skip to main content
Log in

Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2011

Abstract

The role of ectomycorrhizal fungi on mineral nutrient mobilization and uptake is crucial for tree nutrition and growth in temperate forest ecosystems. By using a “mineral weathering budget” approach, this study aims to quantify the effect of the symbiosis with the ectomycorrhizal model strain Laccaria bicolor S238N on mineral weathering and tree nutrition, carrying out a column experiment with a quartz/biotite substrate. Each column was planted with one Scots pine (Pinus sylvestris L.) non-mycorrhizal or mycorrhizal with L. bicolor, with exception of the abiotic control treatment. The columns were continuously supplied with a nutrient-poor solution. A mineral weathering budget was calculated for K and Mg. The pine shoot growth was significantly increased (73%) when plants were mycorrhizal with L. bicolor. Whatever their mycorrhizal status, pines increased mineral weathering by factors 1.5 to 2.1. No difference between non-mycorrhizal and mycorrhizal pine treatments was revealed, however, mycorrhizal pines assimilated significantly more K and Mg. This suggests that in our experimental conditions, L. bicolor S238N improved shoot growth and K and Mg assimilation in Scots pine mainly by increasing the uptake of dissolved nutrients, linked to a better exploration and exploitation of the soil by the mycorrhizal roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahonen-Jonnarth U, Van Hees PAW, Lundström US et al (2000) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, Göransson A, Finlay RD (2003) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings treated with elevated Al concentrations. Tree Physiol 23:157–167

    PubMed  CAS  Google Scholar 

  • April R, Keller D (1990) Mineralogy of the rhizosphere in forest soils of the eastern United States-Mineralogic studies of the rhizosphere. Biogeochemistry 9:1–18

    Article  Google Scholar 

  • Arocena JM, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. For Ecol Manag 133:61–70

    Article  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Dickinson J et al (2008a) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72:2601–2618

    Article  CAS  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Gill RA et al (2008b) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York, USA

    Google Scholar 

  • Baum C, Stetter U, Makeschin F (2002) Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and a field experiment. For Ecol Manag 163:1–8

    Article  Google Scholar 

  • Blum JD, Klaue A, Nezat CA et al (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  PubMed  CAS  Google Scholar 

  • Boyle JR, Voigt GK (1973) Biological weathering of silicate materials. Implications for tree nutrition and soil genesis. Plant Soil 38:191–201

    Article  CAS  Google Scholar 

  • Brandes B, Golbold DL, Kuhn AJ et al (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New phytol 140:735–743

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Casarin V, Plassard C, Hinsinger P et al (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185

    Article  Google Scholar 

  • Chalot M, Javelle A, Blaudez D et al (2002) An update on nutrient processes in ectomycorrhizas. Plant Soil 244:165–175

    Article  CAS  Google Scholar 

  • Cromack K Jr, Sollins P, Grostein WC et al (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    Article  CAS  Google Scholar 

  • Di Battista C, Selosse MA, Bouchard D et al (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S238. Mycol Res 100:1315–1324

    Article  Google Scholar 

  • Drever JI (2005) Surface and ground water, weathering, and soils. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 5. Elsevier, Amsterdam

    Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann For Sci 48:239–251

    Article  Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional roles. Mycologist 18:91–96

    Article  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139–144

    PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformation of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290

    Article  CAS  Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139

    Article  Google Scholar 

  • Heinonsalo J, Klett P, Pierrat JC et al (2004) Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biol Biochem 36:211–216

    Article  CAS  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hinsinger P, Jaillard B, Dufey JE (1992) Rapid weathering of a trioctahedral mica by roots of Ryegrass. Soil Sci Soc Am J 56:977–982

    Article  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H et al (2004) The role of fungi in weathering. Front Ecol Environ 5:258–264

    Article  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ et al (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    Article  CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundstrom U et al (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kelly E, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53

    Article  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: cause and effect? Pedobiologia 49:511–520

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD et al (2001) Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–253

    Article  PubMed  Google Scholar 

  • Le Tacon F, Bouchard D, Churin JL et al (2005) Mycorhization contrôlée du Douglas et du chêne. For Entrep 164:33–37

    Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric micro-organisms of pine. Soil Sci Soc Am J 55:1009–1016

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Pachlewski R, Packlewska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus sylvestris) with the aid of the method of mycorrhizal synthesis in pure culture on agar. Forest Research Institute, Warsaw

    Google Scholar 

  • Paris F, Bonnaud P, Ranger J et al (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. 1. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Quoreshi AM, Timmer VR (2000) Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Can J For Res 30:744–752

    Article  Google Scholar 

  • Robert M, Berthelin J (1986) Role of biological and biochemical factors in soil mineral weathering. In: Huang PM (ed.) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison, Wi, pp 453–495

  • Rosling A, Lindahl BD, Taylor AFS et al (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37

    Article  PubMed  CAS  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Smith SA, Read D (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Spyridakis DC, Chesters G, Wilde SA (1967) Kaolinisation of biotite as a result of coniferous and deciduous seedling growth. Soil Sci Soc Am Proc 31:203–210

    Article  CAS  Google Scholar 

  • Torres Aquino M, Plassard C (2004) Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol Ecol 48:149–156

    Article  PubMed  CAS  Google Scholar 

  • Van Breemen N, Finlay RF, Lundström U et al (2000) Mycorrhizal weathering: a true case of mineral plant nutrition. Biogeochemistry 49:53–67

    Article  Google Scholar 

  • Van Hees PAW, Rosling A, Lundström US et al (2006) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136:364–377

    Article  Google Scholar 

  • Van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    Article  PubMed  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wallander H, Johansson L, Pallon J (2002) PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiol Ecol 39:147–156

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Huang J, Li X et al (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge K. Bateman for review of the English language, A. Kohler, G. Nourrisson, J.L. Churin, and P. Vion for technical help. This work was supported by the Andra (Agence nationale pour la gestion des déchets radioactifs) and by the Lorraine Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turpault Marie-Pierre.

Additional information

Responsible Editor: Katharina Pawlowski.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11104-011-0915-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophe, C., Marie-Pierre, T., Stéphane, U. et al. Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant Soil 328, 145–154 (2010). https://doi.org/10.1007/s11104-009-0092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0092-0

Keywords

Navigation