Skip to main content
Log in

Responses of caryopsis germination, early seedling growth and ramet clonal growth of Bromus inermis to soil salinity

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Bromus inermis is a dominant rhizomatous grass in Otindag Sandland of North China, where soil salinization is increasing. We studied responses of caryopsis germination, early seedling growth and ramet integrative growth of this clonal plant to salinity. Caryopses germinated in NaCl solutions ≤0.2 M. Ungerminated caryopses treated with >0.02 M NaCl germinated after transfer to 0.02 M NaCl, and percentage germination recovery increased with treatment NaCl concentration. No seedlings survived NaCl concentrations >0.3 M. At 0.3 M NaCl, biomass and height of seedlings significantly decreased with increase in treatment NaCl concentration, but root/shoot ratio significantly increased. Ramets exposed to high salinity survived if interconnected to a neighbour ramet not exposed to salinity. However, if interconnections were severed ramets exposed to high salinity died. Thus, B. inermis is adapted to the saline environment in Otindag Sandland in both the asexual and sexual stages of its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amsberry L, Baker MA, Ewanchuk PJ, Bertness MD (2000) Clonal integration and the expansion of Phragmites australis. Ecol Appl 10:1110–1118. doi:10.1890/1051-0761(2000)010[1110:CIATEO]2.0.CO;2

    Article  Google Scholar 

  • Bao SD (2000) Soil chemistry and agriculture analysis. Chinese Agricultural Press, Beijing. (in Chinese)

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  • Bidlack JE, Buxton DR (1995) Chemical regulation of growth, yield, and digestibility of alfalfa and smooth bromegrass. J Plant Growth Regul 14:1–7. doi:10.1007/BF00212639

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Evans JP, Whitney S (1992) Clonal integration across a salt gradient by a nonhalophyte Hydrocotyle bonariensis (Apiaceae). Am J Bot 79:1344–1347. doi:10.2307/2445132

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp.28.060177.000513

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190. doi:10.1146/annurev.pp.31.060180.001053

    Article  CAS  Google Scholar 

  • Gul B, Weber DJ (1999) Effect of salinity, light and temperature on germination in Allenrolfea occidentalis. Can J Bot 77:240–246. doi:10.1139/cjb-77-2-240

    Article  Google Scholar 

  • Gutterman Y (1980/81) Annual rhythm and position effect in the germinability of Mesembryanthemum nodiflorum. Isr J Botan 29:93–97

    Google Scholar 

  • Gutterman Y (1993) Seed germination in desert plants. Adaptations of desert organisms. Springer, Berlin

    Google Scholar 

  • Harper JL (1957) The ecological significance of dormancy and its importance in weed control. Proc Int Cong Crop Prot 4:415–420

    Google Scholar 

  • Hester MW, Mckee KL, Burdick DM, Koch MS, Flynn KM, Patterson S et al (1994) Clonal integration in Spartina patens across a nitrogen and salinity gradient. Can J Bot 72:767–770. doi:10.1139/b94-096

    Article  Google Scholar 

  • Huang ZY, Zhang XS, Zheng GH, Gutterman Y (2003) Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J Arid Environ 55:453–464. doi:10.1016/S0140-1963(02)00294-X

    Article  Google Scholar 

  • Huang ZY, Dong M, Gutterman Y (2004) Factors influencing seed dormancy and germination in sand, and seedling survival under desiccation, of Psammochloa villosa (Poaceae), inhabiting the moving sand dunes of Ordos, China. Plant Soil 259:231–241. doi:10.1023/B:PLSO.0000020971.66784.fc

    Article  CAS  Google Scholar 

  • Katembe WJ, Ungar IA, John PM (1998) Effect of salinity on germination and seedling growth of two Atriplex species. Ann Bot (Lond) 82:167–175. doi:10.1006/anbo.1998.0663

    Article  Google Scholar 

  • Kennedy BF, de Filippis LF (1999) Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. J Plant Physiol 155:746–754

    CAS  Google Scholar 

  • Khan MA, Ungar IA (1997) Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. Am J Bot 84:279–283. doi:10.2307/2446089

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214. doi:10.1006/jare.2000.0640

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2001) Seed germination characteristics of Halogeton glomeratus. Can J Bot 79:1189–1194. doi:10.1139/cjb-79-10-1189

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2002) Seed germination in the Great Basin halophyte Salsola iberica. Can J Bot 80:650–655. doi:10.1139/b02-046

    Article  Google Scholar 

  • Malhi SS, Nyborg M, Harapiak JT, Heier K, Flore NA (1997) Increasing organic C and N in soil under bromegrass with long-term N fertilization. Nutr Cycl Agroecosyst 49:255–260. doi:10.1023/A:1009727530325

    Article  CAS  Google Scholar 

  • Osone Y, Tateno M (2005) Applicability and limitations of optimal biomass allocation models: a test of two species from fertile and infertile habitats. Ann Bot (Lond) 95:1211–1220. doi:10.1093/aob/mci133

    Article  Google Scholar 

  • Passos VM, Santana NO, Gama FC, Oliveira JG, Azevedo RA, Vitória AP (2005) Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress. Biol Plant 49:285–288. doi:10.1007/s10535-005-5288-4

    Article  Google Scholar 

  • Penney DC, Malhi SS, Kryzanowski L (1990) Effect of rate and source of N fertilizer on yield, quality and N recovery of bromegrass grown for hay. Nutr Cycl Agroecosyst 25:159–166

    CAS  Google Scholar 

  • Pennings SC, Callaway RM (2000) The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology 81:709–716

    Article  Google Scholar 

  • Pitelka LF, Ashmun JW (1985) Physiology and integration of ramets in clonal plants. In: Jackson J, Buss L, Cook R (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 399–435

    Google Scholar 

  • Qu XX, Baskin JM, Wang L, Huang ZY (2008a) Effects of cold stratification, temperature, light and salinity on seed germination and radicle growth of the desert halophyte shrub, Kalidium caspicum (Chenopodiaceae). Plant Growth Regul 54:241–248. doi:10.1007/s10725-007-9246-3

    Article  CAS  Google Scholar 

  • Qu XX, Huang ZY, Baskin JM, Baskin CC (2008b) Effect of temperature, light and salinity on seed germination and radicle growth of the geographically-widespread halophyte shrub Halocnemum strobilaceum. Ann Bot (Lond) 101:293–299. doi:10.1093/aob/mcm047

    Article  Google Scholar 

  • Salzman AG, Parker MA (1985) Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia 65:273–277. doi:10.1007/BF00379229

    Article  Google Scholar 

  • Shimizu T, Hatanaka Y, Zentoh H, Yashima T, Kinoshita E, Watano Y et al (1998) The role of sexual and clonal reproduction in maintaining population in Fritillaria camtschatcensis. Ecol Res 13:27–39. doi:10.1046/j.1440-1703.1998.00245.x

    Article  Google Scholar 

  • Shumway SW (1995) Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh. Ann Bot (Lond) 76:225–233. doi:10.1006/anbo.1995.1091

    Article  Google Scholar 

  • Sokal RR, Rohlf EJ (1995) Biometry, 3rd edn. Freeman, San Francisco

    Google Scholar 

  • Ungar IA (2001) Seed banks and seed population dynamics of halophytes. Wetlands Ecol Manage 9:499–510. doi:10.1023/A:1012236829474

    Article  Google Scholar 

  • Wang ZQ, Zhu SQ, Yu RP (1993) China Saline Soil. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Wei Y, Dong M, Huang ZY, Tan DY (2008) Factors influencing seed germination of Salsola affinis, a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora 203:134–140

    Google Scholar 

  • Winkler E, Fischer M (1999) Two fitness measures for clonal plants and the importance of spatial aspects. Plant Ecol 141:191–199. doi:10.1023/A:1009843619713

    Article  Google Scholar 

  • Yang HL, Zhu XW, Dong M, Huang ZY, Cao ZP (2005) Responses of caryopsis germination, seedling emergence and development to sand water content in Agropyron cristatum and Bromus inermis, two grasses in Otindag Sandland, China. J Integr Plant Biol 47:1450–1458. doi:10.1111/j.1744-7909.2005.00170.x

    Article  Google Scholar 

  • Yang HL, Cao ZP, Dong M, Ye YZ, Huang ZY (2007a) Effects of sand burying on caryopsis germination and seedling growth of Bromus inermis Leyss. Chin J Appl Ecol 18(11):2438–2443. (in Chinese, with English abstract)

    Google Scholar 

  • Yang HL, Cao ZP, Zhu XW, Dong M, Ye YZ, Huang ZY (2007b) Spatial pattern of Bromus inermis (Poaceae) in Otindag Sandland, China. Acta Ecol Sin 27:2765–2773. (in Chinese, with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are extended to Dr. Gehan K.M.G.. Jayasuriya, from Biology Department, University of Kentucky, USA, for valuable advice on data analysis. Prof. Huang Zhenying thanks The Chinese Academy of Sciences for awarding him a fellowship for a 3-month visit to the Biology Department, University of Kentucky, Lexington, USA.

Funds for this study were provided by the Key Basic Research and Development Plan of China (2007CB106802), Key Project of CAS (KZCX2-XB2-01), National Natural Science Foundation of P. R. China (30570281, 30872074, 30570296), and National Science Foundation for Post-doctoral Scientists of China (20080430589).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenying Huang or Ming Dong.

Additional information

Responsible Editor: Tibor Kalapos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Huang, Z., Baskin, C.C. et al. Responses of caryopsis germination, early seedling growth and ramet clonal growth of Bromus inermis to soil salinity. Plant Soil 316, 265–275 (2009). https://doi.org/10.1007/s11104-008-9778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9778-y

Keywords

Navigation