Skip to main content
Log in

Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S.

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In agricultural landscapes, variation and ecological plasticity in depth of water uptake by annual and perennial plants is an important means by which vegetation controls hydrological balance. However, little is known about how annual and perennial plants growing in agriculturally dominated landscapes in temperate humid regions vary in their water uptake dynamics. The primary objective of this study was to quantify the depth of water uptake by dominant plant species and functional groups growing in contrasting annual and perennial systems in an agricultural landscape in Central Iowa. We used stable oxygen isotope techniques to determine isotopic signatures of soil water and plant tissue to infer depth of water uptake at five sampling times over the course of an entire growing season. Our results suggest that herbaceous species (Zea mays L., Glycine max L. Merr., Carex sp., Andropogon gerardii Vitman.) utilized water predominantly from the upper 20 cm of the soil profile and exhibited a relatively low range of ecological plasticity for depth of water uptake. In contrast, the woody shrub (Symphoricarpos orbiculatus Moench.) and tree (Quercus alba L.) progressively increased their depth of water uptake during the growing season as water became less available, and showed a high degree of responsiveness of water uptake depth to changes in precipitation patterns. Co-existing shrubs and trees in the woodland and savanna sites extracted water from different depths in the soil profile, indicating complementarity in water uptake patterns. We suggest that deep water uptake by perennial plants growing in landscapes dominated by rowcrop agriculture can enhance hydrologic functioning. However, because the high degree of ecological plasticity allows some deep-rooted species to extract water from surface horizons when it is available, positive effects of deep water uptake may vary depending on species’ growth patterns and water uptake dynamics. Knowledge about individual species’ and plant communities’ depth of water uptake patterns in relation to local climate conditions and landscape positions can provide valuable information for strategically incorporating perennial plants into agricultural landscapes to enhance hydrologic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrams MD (1996) Distribution, historical development and ecophysiological attributes of oak species in the eastern United States. Ann des Sci Forest 53(2–3):487–512 DOI 10.1051/forest:19960230

    Article  Google Scholar 

  • Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil–water movement in a temperate semi-arid region. J Hydrol 60(1–4):57–173 DOI 10.1016/0022-1694(83)90019-7

    Google Scholar 

  • Araki H, Iijima M (2005) Stable isotope analysis of water extraction from subsoil in upland rice (Oryza sativa L.) as affected by drought and soil compaction. Plant Soil 270(1–2):147–157 DOI 10.1007/s11104-004-1304-2

    Article  CAS  Google Scholar 

  • Asbjornsen H, Brudvig LA, Mabry CM, Evans CW, Karnitz HM (2005) Defining reference information for restoring ecologically rare tallgrass oak savannas in the Midwestern United States. J Forestry 103(7)345–350

    Google Scholar 

  • Asbjornsen H, Mora G, Helmers M (2007) Variation in depth of water uptake in contrasting perennial and annual ecosystems in central Iowa: application of a multiple-source mass-balance isotope approach. Agric Ecosys Environ 121:343–356 DOI 10.1016/j.agee.2006.11.009

    Article  Google Scholar 

  • Baldocchi DD, Xu LK, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric Forest Meteorol 123(1–2):13–39 DOI 10.1016/j.agrformet.2003.11.006

    Article  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97(2–3):248–253 DOI 10.1016/j.fcr.2005.10.005

    Article  Google Scholar 

  • Bharati L, Lee KH, Isenhart TM, Schultz RC (2002) Soil–water infiltration under crops, pasture, and established riparian buffer in midwestern USA. Agroforestry Syst 56:249–257 DOI 10.1023/A:1021344807285

    Article  Google Scholar 

  • Boody G, Vondracek B, Andow DA (2005) Multifunctional agriculture in the United States. BioScience 55:27–38 DOI 10.1641/0006-3568(2005)055[0027:MAITUS]2.0.CO;2

    Article  Google Scholar 

  • Brunel J-P, Walker GR, Kennett-Smith AK (1995) Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. J Hydrol 167:351–368 DOI 10.1016/0022-1694(94)02575-V

    Article  CAS  Google Scholar 

  • Brye KR, Norman JM, Bundy LG, Gower ST (2000) Water-budget evaluation of prairie and maize ecosystems. Soil Sci Soc Am J 64:715–724

    CAS  Google Scholar 

  • Burkart MR, James DE (1999) Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. J Environ Qual 28:850–860

    CAS  Google Scholar 

  • Callaway RM (1990) Effects of soil–water distribution on the lateral root development of 3 Species of California oaks. Amer J Bot 77(11):1469–1475 DOI 10.2307/2444757

    Article  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84(5):1115–1128 DOI 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108(4):583-595 DOI 10.1007/BF00329030

    Google Scholar 

  • Carmi A, Plaut Z, Sinai M (1993) Cotton root-growth as affected by changes in soil–water distribution and their impact on plant tolerance to drought. Irrigation Science 13(4):177–182 DOI 10.1007/BF00190033

    Article  Google Scholar 

  • Chahine MT (1992) The hydrological cycle and its influence on climate. Nature 359(6394):373–380 DOI 10.1038/359373a0

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916 DOI 10.1093/aob/mcf105

    CAS  Google Scholar 

  • Collins DBG, Bras RL (2007) Plant rooting strategies in water-limited ecosystems. Water Resour Res 43(6), Art. No. W06407, DOI 10.1029/2006WR005541

  • Crick JC, Grime JP (1987) Morphological plasticity and mineral nutrient capture in 2 herbaceous species of contrasted ecology. New Phytol 107(2):403–414 DOI 10.1111/j.1469-8137.1987.tb00192.x

    Article  Google Scholar 

  • Daniels RB, Gilliam JW (1996) Sediment and chemical load reduction by grass and riparian filters. Soil Sci Soc Am J 60:246–251

    CAS  Google Scholar 

  • Dardanelli JL, Bachmeier OA, Sereno R, Gil R (1997) Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res 54(1):29–38 DOI 10.1016/S0378-4290(97)00017-8

    Article  Google Scholar 

  • Dodd MB, Laurenroth WK, Welker LM (1998) Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community. Oecologia 117:504–512 DOI 10.1007/s004420050686

    Article  Google Scholar 

  • Dongmann G, Nurnberg HW, Forstel H, Wagener K (1974) On the enrichment of H2 18O in leaves of transpiring plants. Radiation Environ Biophys 11:41–52 DOI 10.1007/BF01323099

    Article  CAS  Google Scholar 

  • Dosskey MG, Helmers MJ, Eisenhauer DE, Franti TG, Hoagland KD (2002) Assessment of concentrated flow through riparian buffers. J Soil Water Conserv 57:336–343

    Google Scholar 

  • Durand JL, Bariac T, Ghesquiere M, Biron P, Richard P, Humphreys M, Zwierzykovski Z (2007) Ranking of the depth of water extraction by individual grass plants, using natural O-18 isotope abundance. Environ Exp Bot 60(1):137–144 DOI 10.1016/j.envexpbot.2006.09.004

    Article  CAS  Google Scholar 

  • Eckhardt K, Breuer L, Frede HG (2003) Parameter uncertainty and the significance of simulated land use change effects. J Hydrol 273:164–176 DOI 10.1016/S0022-1694(02)00395-5

    Article  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082 DOI 10.1111/j.1365-3040.1992.tb01657.x

    Article  CAS  Google Scholar 

  • Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR (1991) Differential utilization of summer rains by desert plants. Oecologia 88(3):430–434 DOI 10.1007/BF00317589

    Article  Google Scholar 

  • Engels C, Mollenkopf M, Marschner H (1994) Effect of drying and rewetting the topsoil on root-growth of maize and rape in different soil depths. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 157(2):139–144 DOI 10.1002/jpln.19941570213

    Article  Google Scholar 

  • Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143(4):598–606 DOI 10.1007/s00442-005-0010-y

    Article  PubMed  Google Scholar 

  • Fitzjohn C, Ternan JL, Williams AG (1998) Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control. Catena 32:55–70

    Article  Google Scholar 

  • Flanagan LB, Ehleringer JR (1991) Stable isotope composition of stem and leaf water: application to the study of plant water tissue. Funct Ecol 5:270–277

    Article  Google Scholar 

  • Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831–836 DOI 10.1111/j.1365-3040.1992.tb02150.x

    Article  Google Scholar 

  • Fohrer N, Haverkamp S, Eckardt K, Frede H-G (2001) Hydrologic Response to Land Use Changes on the Catchment Scale. Phys Chem Earth 26(7–8):577–582

    Google Scholar 

  • Foster BL (1999) Establishment, competition and the distribution of native grasses among Michigan old-fields. J Ecol 87(3)476–489

    Article  Google Scholar 

  • Fu B, Wang J, Chen L, Qiu Y (2003) The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 54(1–2):197–213 DOI 10.1016/S0341-8162(03)00065-1

    Article  Google Scholar 

  • Gholz HL, Ewel KC, Teskey RO (1990) Water and forest productivity. For Ecol Manag 30:1–18 DOI 10.1016/0378-1127(90)90122-R

    Article  Google Scholar 

  • Grieu P, Lucero DW, Ardianin R, Ehleringer JR (2001) The mean depth of soil water uptake by two temperate grassland species over time subjected to mild soil water deficit and competitive association. Plant Soil 230(2):197–209 DOI 10.1023/A:1010363532118

    Article  CAS  Google Scholar 

  • Gustafson DJ, Gibson DJ, Nickrent DL (2004) Competitive relationships of Andropogon gerardii (Big Bluestem) from remnant and restored native populations and select cultivated varieties. Funct Ecol 18(3):451–457 DOI 10.1111/j.0269-8463.2004.00850.x

    Article  Google Scholar 

  • Hayes DC, Seastedt TR (1987) Root dynamics of tallgrass prairie in wet and dry years. Can J Bot 65:787–791

    Article  Google Scholar 

  • Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86(2):308–319 DOI 10.1890/03-0583

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108(3):389–411 DOI 10.1007/BF00333714

    Article  Google Scholar 

  • Jofre R, Rambal S (1993) How tree cover influences the water-balance of Mediterranean rangelands. Ecology 74(2):570–582 DOI 10.2307/1939317

    Article  Google Scholar 

  • Karnitz HM, Asbjornsen H (2005) Composition and age structure of a degraded tallgrass oak savanna in central Iowa, USA. Nat Areas J 26(2):179–186 DOI 10.3375/0885-8608(2006)26[179:CAASOA]2.0.CO;2

    Article  Google Scholar 

  • Knapp AK (1984) Water relations and growth of three grasses during wet and drought years in a tallgrass prairie. Oecologia 65(1):35–43 DOI 10.1007/BF00384460

    Article  Google Scholar 

  • Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4(1):19–28 DOI 10.1007/s100210000057

    Article  Google Scholar 

  • Krucera CL, Dahlman RC (1968) Root–rhizome relationships in fire-treated stands of big bluestem, Andropogon gerardii Vitman. Am Midl Nat 80:268–271 DOI 10.2307/2423615

    Article  Google Scholar 

  • Laboski CAM, Dowdy RH, Allmaras RR, Lamb JA (1998) Soil strength and water content influences on corn root distribution in a sandy soil. Plant Soil 203(2):239–247 DOI 10.1023/A:1004391104778

    Article  CAS  Google Scholar 

  • Lee KH, Isenhart TM, Schultz RC (2003) Sediment and nutrient removal in an established multi-species riparian buffer. J Soil Water Conserv 58:1–10

    Google Scholar 

  • Liu ZM, Thompson K, Spencer RE, Reider RJ (2000) A comparative study of morphological responses of seedling roots to drying soil in 20 species from different habitats. Acta Bot Sinica 42(6):628–635

    Google Scholar 

  • Mahmood R, Hubbard KG (2003) Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J Hydrol 280(1–4):72–90 DOI 10.1016/S0022-1694(03)00183-5

    Article  Google Scholar 

  • Mayaki WC, Teare ID, Stone LR (1976) Top and root growth of irrigated and nonirrigated soybeans. Crop Sci 16(1):92–94

    Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121(3):293–301 DOI 10.1007/s004420050931

    Article  Google Scholar 

  • Merrill SD, Tanaka DL, Hanson JD (2002) Root length growth of eight crop species in haplustoll soils. Soil Sci Soc Am J 66(3):913–923

    CAS  Google Scholar 

  • Midwood AJ, Boutton TW, Archer SR, Watts SE (1998) Water use by woody plants on contrasting soils in a savanna parkland: assessment with d2H and d18O. Plant Soil 205(1):13–24 DOI 10.1023/A:1004355423241

    Article  CAS  Google Scholar 

  • Monaco TA, Johnson DA, Creech JE (2005) Morphological and physiological responses of the invasive weed Isatis tinctoria to contrasting light, soil-nitrogen and water. Weed Res 45(6):460–466 DOI 10.1111/j.1365-3180.2005.00480.x

    Article  Google Scholar 

  • Mora G, Jahren AH (2003) Isotopic evidence for the role of plant development on transpiration in deciduous forests of southern United States. Global Biogeochem Cycles 17(2): 1044-105 DOI 10.1029/2002GB001981

  • Mousel EM, Schacht WH, Zanner CW, Moser LE (2005) Effects of Summer Grazing on Organic Reserves and Root Characteristics of Big Bluestem. Crop Sci 45:2008–2014 DOI 10.2135/cropsci2004.0694

    Article  Google Scholar 

  • National Climate Data Center (2007a) Cooperative Station ID 132203. National Climate Data Center

  • National Climate Data Center (2007b) U.S. Climate Reference Network IA Des Moines 17E, Neal Smith NWR (NOAA Station Site)

  • Nippert JB, Knapp AK (2007) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116(6):1017–1029 DOI 10.1111/j.0030-1299.2007.15630.x

    Article  Google Scholar 

  • North GB, Nobel PS (1998) Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. Plant Cell Environ 21(7):705–713 DOI 10.1046/j.1365-3040.1998.00317.x

    Article  Google Scholar 

  • Pandey RK, Herrera WAT, Villegas AN, Pendleton JW (1984) Drought response of grain legumes under irrigation gradient: 3. Plant Growth. Agron J 76(4):557–560

    Google Scholar 

  • Peek MS, Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM (2005) Fine root distribution and persistence under field conditions of three co-occurring Great Basin species of different life form. New Phytol 165(1):171–180 DOI 10.1111/j.1469-8137.2004.01186.x

    Article  PubMed  Google Scholar 

  • Phillips SL, Ehleringer JR (1995) Limited uptake of summer precipitation by Bigtooth Maple (Acer grandidentatum Nutt) and Gambels Oak (Quercus gambelii Nutt). Trees 9(4):214–219 DOI 10.1007/BF00195275

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269 DOI 10.1007/s00442-003-1218-3

    Article  PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture (syntheses in ecology and evolution). Johns Hopkins University Press, Baltimore, MD, USA

    Google Scholar 

  • Ponton S, Dupouey JL, Breda N, Dryer E (2002) Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype × environment interactions. Tree Physiol 22(6):413–422

    PubMed  Google Scholar 

  • Qiu Y, Fu BJ, Wang J, Chen LD (2001) Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J Hydrol 240(3–4):243–263 DOI 10.1016/S0022-1694(00)00362-0

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Scavia D (2002) Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience 52(2):129–142

    Article  Google Scholar 

  • Randall GW, Huggins DR, Russelle MP, Fuchs DJ, Nelson WW, Anderson JL (1997) Nitrate losses through subsurface drainage in conservation reserve program, alfalfa, and row crop systems. J Environ Qual 26:1240–1247

    Article  CAS  Google Scholar 

  • Retzlaff WA, Blaisdell GL, Topa MA (2001) Seasonal changes in water source of four families of loblolly pine (Pinus taeda L.). Trees 15(3):154–162 DOI 10.1007/s004680100087

    Article  Google Scholar 

  • Risser PG, Birney EG, Blocker HD, May S, Parton WJ, Weins JA (1981) The true prairie ecosystem. Hutchinson Ross Publ. Co., Stroudsburg, PA

    Google Scholar 

  • Schilling KE, Libra RD (2000) The relationship of nitrate concentrations in streams to row crop land use in Iowa. J Environ Qual 29(6):1846–1851

    CAS  Google Scholar 

  • Schulte LA, Liebman M Asbjornsen H, Crow T (2006) Unplowing the land: restoring agroecosystem health and function through perennialization. J Soil Water Conserv 61(6):165–169

    Google Scholar 

  • Schulze E-D, Zwölfer H (eds) (1987) In: Potentials and limitations of ecosystem analysis. Ecological Studies 61. Springer: Berlin, Heidelberg, New York

  • Sims PL, Singh JS (1978) The structure and function of ten western North American grasslands. J Ecol 66:547–572 DOI 10.2307/2259151

    Article  Google Scholar 

  • Singh R, Helmers MJ, Crumpton WG, Lemke DW (2007) Predicting effects of drainage water management in Iowa’s subsurface drained landscapes. Agric Water Manage 92:162–170 DOI 10.1016/j.agwat.2007.05.012

    Article  Google Scholar 

  • Soil Conservation Service (1979) Soil survey of Jaspar county, Iowa. United States Department of Agriculture, Soil Conservation Service, Washington D. C

    Google Scholar 

  • Suding KN, Goldberg DE (1999) Variation in the effects of vegetation and litter on recruitment across productivity gradients. J Ecol 87(3):436–449 DOI 10.1046/j.1365-2745.1999.00367.x

    Article  Google Scholar 

  • Swemmer AM, Knapp AK, Smith MD (2006) Growth responses of two dominant C4 grass species to altered water availability. Int J Plant Sci 167(5):1001–1010 DOI 10.1086/505611

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc Natl Acad Sci USA 96(11):5995–6000 DOI 10.1073/pnas.96.11.5995

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677 DOI 10.1038/nature01014

    Article  PubMed  CAS  Google Scholar 

  • Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (1999) Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in Central Iowa, USA. Agrofor Syst 44:163–174 DOI 10.1023/A:1006221921806

    Article  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: A paired watershed comparison. J Environ Qual 31:1214–1225

    PubMed  CAS  Google Scholar 

  • Vaché KB, Eilers JM, Santelmann MV (2002) Water quality modeling of alternative agricultural scenarios in the U.S. Corn Belt. J Am Water Resour Assoc 38:773–787 DOI 10.1111/j.1752-1688.2002.tb00996.x

    Article  Google Scholar 

  • Weaver JE (1958) Summary and interpretation of underground development in natural grassland communities. Ecol Monogr 28(1):55–78 DOI 10.2307/1942275

    Article  Google Scholar 

  • Weaver JE (1968) Prairie plants and their environment: a fifty-year study in the Midwest. University of Nebraska Press, Lincoln, NE

    Google Scholar 

  • Weltzin JF, McPherson GR (1997) Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA. Oecologia 112(2):156–164 DOI 10.1007/s004420050295

    Article  Google Scholar 

  • Williams DG, Ehleringer JR (2000) Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol Monogr 70(4):517–537

    Google Scholar 

  • Yu G-R, Zhuang J, Nakayama K, Jin Y (2007) Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecol 189(1):15–30 DOI 10.1007/s11258-006-9163-y

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the USDA Forest Service North-Central Research Station, the Iowa State University Research Grants Program, The Land Institute, and NSF-BE/CNH-0508091. We also thank Ryan Maher, Melissa Cheatham, Maged Nosshi, and Dave Williams for their assistance with field and lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Asbjornsen.

Additional information

Responsible Editor: Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asbjornsen, H., Shepherd, G., Helmers, M. et al. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S.. Plant Soil 308, 69–92 (2008). https://doi.org/10.1007/s11104-008-9607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9607-3

Keywords

Navigation