Skip to main content
Log in

Cadmium-induced oxidative damage in rice leaves is reduced by polyamines

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The protective effect of polyamines against Cd toxicity of rice (Oryza sativa) leaves was investigated. Cd toxicity to rice leaves was determined by the decrease in protein content. CdCl2 treatment results in (1) increased Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in ascorbic acid (ASC) and reduced glutathione (GSH) contents, and (5) increase in the activities of antioxidative enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). Spermidine (Spd) and spermine (Spm), but not putrescine (Put), were effective in reducing CdCl2-induced toxicity. Spd and Spm prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of ASC and GSH, and increase in the activities of antioxidative enzymes. Spd and Spm pretreatments resulted in a decrease in Cd content when compared with H2O pretreatment, indicating that Spd and Spm may reduce the uptake of Cd. Results of the present study suggest that Spd and Spm are able to protect Cd-induced oxidative damage and this protection is most likely related to the avoidance of H2O2 generation and the reduction of Cd uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ASC:

Ascorbic aicd

CAT:

Catalase

DAB:

3,3′-Diaminobenzidine

DHA:

Dehydroascorbate

DW:

Dry weight

FW:

Fresh weight

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

POX:

Peroxidase

Put:

Putrescine

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Spd:

Spermidine

Spm:

Spermine

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 85:235–241

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of reactive oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:501–639

    Article  Google Scholar 

  • Benavides MP, Gallego SM, Comga MZ, Tomaro ML (2000) Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regul 31:215–224

    Article  CAS  Google Scholar 

  • Borrell A, Carbonell L, Farrás R, Puig-Paellada P, Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Article  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang CJ, Kao CH (1997) Paraquat toxicity is reduced by polyamines in rice leaves. Plant Growth Regul 22:163–168

    Article  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen CT, Kao CH (1991) Senescence of rice leaves. XXX. Levels of endogenous polyamines and dark-induced senescence of rice leaves. Plant Cell Physiol 32:935–941

    CAS  Google Scholar 

  • Chen SL, Kao CH (1995) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 17:67–71

    CAS  Google Scholar 

  • Chien HF, Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci 156:111–115

    Article  PubMed  CAS  Google Scholar 

  • Chien HF, Lin CC, Wang JW, Chen CT, Kao CH (2002) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul 36:41–47

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Das P, Sammantaray S, Rout GR (1997) Studies on cadmium toxicity: a review. Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Foster JG, Hess JL (1980) Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    PubMed  CAS  Google Scholar 

  • Foyer CH, Descourvies P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studies in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hou SM, Kao CH (1993) Characteristics of the induction of the ethylene by cadmium in detached rice leaves. Bot Bull Acad Sin 34:163–168

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80

    Article  CAS  Google Scholar 

  • Innelli MA, Pietrni R, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites anstrals plants. Plant Physiol Biochem 40:977–982

    Article  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  • Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can J Bot 65:729–735

    Article  CAS  Google Scholar 

  • Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol Plant 73:518–524

    Article  CAS  Google Scholar 

  • Kuo MC, Kao CH (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45:291–299

    CAS  Google Scholar 

  • Kurepa J, Smalle J, Van Montagu M, Inzé D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992

    PubMed  CAS  Google Scholar 

  • Larsson EH, Bordman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    Article  CAS  Google Scholar 

  • León AM, Palma JM, Corpas FJ, Gomez M, Romeropuertas MC, Chatterjee D, Mateos RM, del Rio LA, Sandalio LM (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Phsyiol Biochem 40:813–820

    Article  Google Scholar 

  • Li C-Z, Wang G-X (2004) Interaction between reactive oxygen species, ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress. Plant Growth Regul 42:55–60

    Article  CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernández LE, Bonay P, Carpena-Ruiz R (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  CAS  Google Scholar 

  • MacAdam JW, Nelson CJ, Sharpe RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99:872–878

    PubMed  CAS  Google Scholar 

  • Minton KW, Tabor H, Tabor CW (1990) Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc Natl Acad Sci USA 87:2851–2855

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asda K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:807–880

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Olmos EO, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  PubMed  CAS  Google Scholar 

  • Ormrod DP, Beckerson DW (1986) Polyamines as antiozonants for tomato. HortScience 21:1070–1071

    CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (1999) Hydrogen peroxide is generated systematically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  PubMed  Google Scholar 

  • Orozco-Cárdenas M, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Capparini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541

    Article  PubMed  CAS  Google Scholar 

  • Piqueras A, Olmos E, Martínez-Solano JR, Hellín E (1999) Cd induced oxidative burst in tobacco BY-2 cell: time-course, subcellular location and antioxidant response. Free Radical Res 31:S25–S31

    Article  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gómez M, del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Zablza A, Rodriguez-Serrano M, Gómez M, del Rio LA, Sandalio LM (2003) Antioxidative response to cadmium in pea roots. Free Radical Res 37:44

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to biotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1366

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwang P, Teichmann T, Gross K, Langenfeld-Heyer R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant response and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Shaw BP (1995) Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37:587–596

    CAS  Google Scholar 

  • Siedlecka A, Baszynski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron deficiency. Physiol Plant 87:199–202

    Article  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303

    Article  PubMed  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122:386–395

    Article  CAS  Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 5:173–212

    Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamines metabolism. Biochem J 376:1–14

    Article  PubMed  CAS  Google Scholar 

  • Weinstein LH, Kaur-Sawhney R, Rajam MV, Wettlaufer SH, Galston AW (1986) Cadmium-induced accumulation of putrescine in oat and bean leaves. Plant Physiol 82:641–645

    PubMed  CAS  Google Scholar 

  • Yu YB, Yang SF (1980) Biosynthesis of wound ethylene. Plant Physiol 66:281–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the National Science Council of the Republic of China (NSC 95-2313-B002-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Huei Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, Y.T., Kao, C.H. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291, 27–37 (2007). https://doi.org/10.1007/s11104-006-9171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9171-7

Keywords

Navigation