Skip to main content
Log in

A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress.

Abstract

Dirigent proteins (DIRs) were discovered during 8-8′ lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (−)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8′ linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (−)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attoumbré J, Charlet S, Baltora-Rosset S, Hano C, Raynaud-Le Grandic S, Gillet F, Bensaddek L, Mesnard F, Fliniaux M-A (2006) High accumulation of dehydrodiconiferyl alcohol-4-β-d-glucoside in free and immobilized Linum usitatissimum cell cultures. Plant Cell Rep 25:859–864

    Article  PubMed  CAS  Google Scholar 

  • Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barto EK, Cipollini D (2005) Testing the optimal defense theory and the growth-differentiation balance hypothesis in Arabidopsis thaliana. Oecologia 146:169–178

    Article  PubMed  Google Scholar 

  • Beejmohun V, Fliniaux O, Hano C, Pilard S, Grand E, Lesur D, Cailleu D, Lamblin F, Lainé E, Kovensky J, Fliniaux MA, Mesnard F (2007) Coniferin dimerisation in lignan biosynthesis in flax cells. Phytochemistry 68:2744–2752

    Article  CAS  PubMed  Google Scholar 

  • Behr M, Legay S, Hausman J-F, Guerriero G (2015) Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. Int J Mol Sci 16:16104–16124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JE, Blais S, Tremblay L, Morency MJ, Pavy N, Grima-Pettenati J, Séguin A, MacKay J (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59:3925–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–380

    Article  CAS  PubMed  Google Scholar 

  • Borges AF, Ferreira RB, Monteiro S (2013) Transcriptomic changes following the compatible interaction Vitis vinifera-Erysiphe necator. Paving the way towards an enantioselective role in plant defence modulation. Plant Physiol Biochem 68:71–80

    Article  CAS  PubMed  Google Scholar 

  • Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article  CAS  PubMed  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Céspedes CL, Avila JG, García AM, Becerra J, Flores C, Aqueveque P, Bittner M, Hoeneisen M, Martinez M, Silva M (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Naturforsch Sect C 61:35–43

    Article  Google Scholar 

  • Chow C-N, Zheng H-Q, Wu N-Y, Chien C-H, Huang H-D, Lee T-Y, Chiang-Hsieh Y-F, Hou P-F, Yang T-Y, Chang W-C (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44:D1154–D1160

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong LH, Dauwe R, Lequart M, Vinchon S, Renouard S, Fliniaux O, Colas C, Corbin C, Doussot J, Hano C, Lamblin F, Molinié R, Pilard S, Jullian N, Boitel M, Gontier E, Mesnard F, Laberche J-C (2015) Kinetics of glucosylated and non-glucosylated aryltetralin lignans in Linum hairy root cultures. Phytochemistry 115:70–78

    Article  PubMed  CAS  Google Scholar 

  • Corbin C, Decourtil C, Marosevic D, Bailly M, Lopez T, Renouard S, Doussot J, Dutilleul C, Auguin D, Giglioli-Guivarc’h N, Lainé E, Lamblin F, Hano C (2013a) Role of protein farnesylation events in the ABA-mediated regulation of the pinoresinol-lariciresinol reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). Plant Physiol Biochem 72:96–111

    Article  CAS  PubMed  Google Scholar 

  • Corbin C, Renouard S, Lopez T, Lamblin F, Lainé E, Hano C (2013b) Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures. J Plant Physiol 170:516–522

    Article  CAS  PubMed  Google Scholar 

  • Corbin C, Drouet S, Mateljak I, Markulin L, Decourtil C, Renouard S, Lopez T, Doussot J, Lamblin F, Auguin D, Lainé E, Fuss E, Hano C (2017) Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246:405–420

    Article  CAS  PubMed  Google Scholar 

  • Dalisay DS, Kim K-W, Lee C, Yang H, Rübel O, Bowen BP, Davin LB, Lewis NG (2015) Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. J Nat Prod 78:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  CAS  PubMed  Google Scholar 

  • Davin LB, Wang H-W, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  • Effenberger I, Zhang B, Li L, Wang Q, Liu Y, Klaiber I, Pfannstiel J, Wang Q, Schaller A (2015) Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol. Angew Chem Int Ed 54:14660–14663

    Article  CAS  Google Scholar 

  • Eliasson C, Kamal-Eldin A, Andersson R, Åman P (2003) High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. J Chromatogr A 1012:151–159

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenart S, Ndong YPA, Duarte J, Rivière N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L, Chabbert B, Guillot X, Tavernier R, Hawkins S, Thomasset B (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genom 11:592

    Article  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Ford JD, Davin LB, Lewis NG (1999) Plant lignans and health: Cancer chemoprevention and biotechnological opportunities. In: Hemingway RW, Gross GG, Yoshida T (eds) Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Kluwer Academic/Plenum Publishers, New York, pp 675–694

    Chapter  Google Scholar 

  • Ford JD, Huang K-S, Wang H-B, Davin LB, Lewis NG (2001) Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J Nat Prod 64:1388–1397

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Fujita M, Davin LB, Lewis NG (1998) The “abnormal lignins”: mapping heartwood formation through the lignan biosynthetic pathway. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis, vol 697. ACS Symposium Series, Washington, DC, pp 389–421

    Chapter  Google Scholar 

  • Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang H-B, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article  CAS  PubMed  Google Scholar 

  • Geldner N (2013) Casparian strips. Curr Biol 23:R1025–R1026

    Article  CAS  PubMed  Google Scholar 

  • Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B (2014) Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol 14:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Sym Biocomput 7:310–322

    Google Scholar 

  • Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins S, Lainé E, Lamblin F (2006a) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  CAS  PubMed  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Lainé E (2006b) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Hano C, Addi M, Fliniaux O, Bensaddek L, Duverger E, Mesnard F, Lamblin F, Lainé E (2008) Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. Plant Physiol Biochem 46:590–600

    Article  CAS  PubMed  Google Scholar 

  • Haworth RD (1937) Natural resins. Annu Rept Prog Chem 33:266–279

    Google Scholar 

  • Hemmati S, von Heimendahl CBI, Klaes M, Alfermann AW, Schmidt TJ, Fuss E (2010) Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med 76:928–934

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S (2003) Knots in trees—a new rich source of lignans. Phytochem Rev 2:331–340

    Article  CAS  Google Scholar 

  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huis R, Hawkins S, Neutelings G (2010) Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 10:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huis R, Morreel K, Fliniaux O, Lucau-Danila A, Fénart S, Grec S, Neutelings G, Chabbert B, Mesnard F, Boerjan W, Hawkins S (2012) Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. Plant Physiol 158:1893–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE (2015) The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci USA 112:10533–10538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazenwadel C, Klebensberger J, Richter S, Pfannstiel J, Gerken U, Pickel B, Schaller A, Hauer B (2013) Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Appl Microbiol Biotechnol 97:7215–7227

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Jeon J-H, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214

    Article  CAS  PubMed  Google Scholar 

  • Kim K-W, Moinuddin SGA, Atwell KM, Costa MA, Davin LB, Lewis NG (2012) Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J Biol Chem 287:33957–33972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-W, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG (2015) Trimeric structure of (+)-pinoresinol forming dirigent protein at 1.95 Å resolution with three isolated active sites. J Biol Chem 290:1308–1318

    Article  PubMed  CAS  Google Scholar 

  • Ko J-H, Beers EP, Han K-H (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Gen Genet 276:517–531

    Article  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    Article  CAS  PubMed  Google Scholar 

  • Konan YKF, Kouassi KM, Kouakou KL, Koffi E, Kouassi KN, Sekou D, Kone M, Kouakou TH (2014) Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. Vasinfectum in cotton (Gossypium hirsutum L.). Int J Agron. https://doi.org/10.1155/2014/806439

    Article  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Krahmer RL, Hemingway RW, Hillis WE (1970) The cellular distribution of lignans in Tsuga heterophylla wood. Wood Sci Technol 4:122–139

    Article  CAS  Google Scholar 

  • Kulik T, Busko M, Pszczólkowska A, Perkowski J, Okorski A (2014) Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett Appl Microbiol 59:99–107

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Jordan MC, Datla R, Cloutier S (2013) The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum usitatissimum L.). PLoS ONE 8:e69124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Davin LB, Lewis NG (2001) In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Phytochemistry 57:899–914

    Article  CAS  PubMed  Google Scholar 

  • Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein-DNA complex formation. Plant J 23:663–676

    Article  CAS  PubMed  Google Scholar 

  • Lainé E, Hano C, Lamblin F (2007) Do flax lignans have misknown benefits? Phytothérapie 5:121–128

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol 1. Elsevier, Oxford, pp 639–712

    Chapter  Google Scholar 

  • Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W (2014) The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genom 15:388

    Article  CAS  Google Scholar 

  • Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  • Liu C-J (2012) Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin. Mol Plant 5:304–317

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Stipanovic RD, Bell AA, Puckhaber LS, Magill CW (2008) Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69:3038–3042

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • MacRae DW, Towers GHN (1984) Biological activities of lignans. Phytochemistry 23:1207–1220

    Article  CAS  Google Scholar 

  • McKeown PC, Laouielle-Duprat S, Prins P, Wolff P, Schmid MW, Donoghue MTA, Fort A, Duszynska D, Comte A, Lao NT, Wennblom TJ, Smant G, Köhler C, Grossniklaus U, Spillane C (2011) Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds. BMC Plant Biol 11:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mönke G, Altschmied L, Tewes A, Reidt W, Mock H-P, Bäumlein H, Conrad U (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219:158–166

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  CAS  PubMed  Google Scholar 

  • Novo-Uzal E, Férnandez-Pérez F, Herrero J, Gutiérrez J, Gómez-Ros LV, Bernal MA, Díaz J, Cuello J, Pomar F, Pedreño MA (2013) From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification. J Exp Bot 64:3499–3518

    Article  CAS  PubMed  Google Scholar 

  • O’Malley RC, Huang S-SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oomah BD (2001) Flaxseed as a functional food source. J Sci Food Agric 81:889–894

    Article  CAS  Google Scholar 

  • Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68:3287–3301

    Article  PubMed  CAS  Google Scholar 

  • Pickel B, Constantin M-A, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed 49:202–204

    Article  CAS  Google Scholar 

  • Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J 14:1381–1393

    Article  CAS  PubMed  Google Scholar 

  • Ralph S, Park J-Y, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article  CAS  PubMed  Google Scholar 

  • Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991

    Article  CAS  PubMed  Google Scholar 

  • Renouard S, Corbin C, Lopez T, Montguillon J, Gutierrez L, Lamblin F, Lainé E, Hano C (2012) Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 235:85–98

    Article  CAS  PubMed  Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects, vol 10. Springer, Boston, MA, pp 168–213

    Chapter  Google Scholar 

  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2006) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    Article  Google Scholar 

  • Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SGA, Yang H, Hartshorn CM, Davin LB, Lewis NG (2015) Non-host disease resistance response in pea (Pisum sativum) pods: biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry 113:140–148

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano R, Nieto C, Avila J, Canãs L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thamil Arasan SK, Park J-I, Ahmed NU, Jung H-J, Hur Y, Kang K-K, Lim Y-P, Nou I-S (2013) Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol Biochem 67:144–153

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga N, Sakakibara N, Umezawa T, Ito Y, Fukuda H, Sato Y (2005) Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 46:224–232

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol 58:398–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  • Umezawa T, Davin LB, Yamamoto E, Kingston DGI, Lewis NG (1990) Lignan biosynthesis in Forsythia species. J Chem Soc Chem Commun:1405–1408

  • Vassão DG, Kim K-W, Davin LB, Lewis NG (2010) Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations. In: Mander LN, Liu H-W (eds) Comprehensive natural products II chemistry and biology, vol 1. Elsevier, Oxford, pp 815–928

    Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183

    Article  CAS  PubMed  Google Scholar 

  • Wallis AFA (1998) Structural diversity in lignans and neolignans. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis, vol 697. ACS Symposium Series, Washington, DC, pp 323–333

    Chapter  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK-S, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  CAS  Google Scholar 

  • Westcott ND, Muir AD (2003) Flax seed lignan in disease prevention and health promotion. Phytochem Rev 2:401–417

    Article  CAS  Google Scholar 

  • Xia Z-Q, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Xie M, Ren G, Yu B (2013) CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci USA 110:17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Bartley LE (2014) Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC Plant Biol 14:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z-Y, Dixon RA (2013) LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25:3976–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Zeng Y, Yin Y, Pu Y, Jackson LA, Engle NL, Martin MZ, Tschaplinski TJ, Ding S-Y, Ragauskas AJ, Dixon RA (2015) Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry 112:170–178

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye Z-H (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. J Plant Pathol 89:41–45

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Région Centre Val de Loire, Conseil Départemental d’Eure et Loir, Ligue contre le Cancer (Comité d’Eure et Loir) and French Ministry Enseignement Supérieur et Recherche and by the Chemical Sciences, Geosciences and Biosciences Division, DOE Office of Basic Energy Sciences (DE-FG-0397ER20259). A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) in Richland WA.

Author information

Authors and Affiliations

Authors

Contributions

CC contributions included realization of the experiments, participation in data analysis and in joint manuscript writing and revisions. SD and LM contributions included participation to the experiments. DA contributions included participation in protein sequence analysis and in joint manuscript writing and revisions. EL contributions included participation in data analysis and interpretation and in joint manuscript writing and revisions. LBD, JRC and NGL contributions included insights on lignin/lignan biosynthesis, participation in data analysis and interpretation and in joint manuscript writing and revisions. CH contributions included conception, design and participation in the experiments, participation in data analysis and interpretation and in joint manuscript writing and revisions. All the authors approved the manuscript.

Corresponding authors

Correspondence to Norman G. Lewis or Christophe Hano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Primers for expression analysis of flax selected-DIR (DOCX 44 KB)

11103_2018_725_MOESM2_ESM.docx

Supplementary material 2 Accession number of the different genes selected as putatively involved in secondary cell wall biosynthesis and remodeling. (DOCX 57 KB)

11103_2018_725_MOESM3_ESM.pptx

Supplementary material 3 Phylogenic tree of minimum evolution of flax DIRs using MEGA6. The alignment of amino acid sequences was conducted in MEGA6 with MUSCLE. The percentages of replicate trees in which associated sequences cluster together in the bootstrap test (percentage of 1000 replicates) are shown next to the branches. Color boxes correspond to phylogenic groups as defined by Ralph et al. (2007). Considering the name and the Phytozome identity, the dirigent-like protein domain PF03018 are identified by a blue box in the schematic protein structure where numbers in small type (e.g. 181, etc.) correspond to the length of the respective proteins. (PPTX 12509 KB)

Supplementary material 4 Selected DIR ortholog genes reported in literature (DOCX 42 KB)

11103_2018_725_MOESM5_ESM.pptx

Supplementary material 5 Sequence alignment of flax DIRs. a. Global MUSCLE sequence alignment performed using Jalview suite. Red and green boxes correspond to the enlarged region A in b. and region B in c. respectively. Conserved motifs I, II, III, IV and V are indicated by a solid black line. Red crosses refer to Phe residues putatively responsible in stereoselectivity (Kim et al. 2012). Orange dots represent highly conserved polar residues (Kim et al. 2015). Blue stars correspond to differing amino acids in (+)- or (–)-pinoresinol forming DIRs (Kim et al. 2015). Green diamonds symbolize functional N-glycosylation sites (Kazenwadel et al. 2013). Colored residues refer to the highly conserved F192, F243 and F287 residues in green; G282, G283, G285 and G292 in pink; H80, H320, H324, H326 and H327 in blue, respectively. (PPTX 602 KB)

11103_2018_725_MOESM6_ESM.docx

Supplementary material 6 Number of cis-acting elements identified in the flax DIR gene promoters by PLACE analysis (DOCX 116 KB)

Supplementary material 7 List of cis-acting elements located in the DIR gene promoter regions (DOCX 55 KB)

11103_2018_725_MOESM8_ESM.pptx

Supplementary material 8 Conserved motifs identified in flax DIR promoters by MEME global analysis. a. Location of the three identified conserved motifs (respectively symbolized by cyan, blue or red boxes) in promoter sequences that are represented by a continuous line and corresponding P value. Scale of promoter sequence is indicated at the bottom, and the transcription start is located on the right extremity. b. TOMTOM analysis results for the three conserved DNA motifs detected in the DIR gene promoter sequences. (PPTX 2356 KB)

11103_2018_725_MOESM9_ESM.pptx

Supplementary material 9 Conserved motifs identified in flax DIR promoters revealed following TOMTOM analysis. p = proximal (500 last bp in 3′); d = distal (next 1000 bp in 5′). (PPTX 84 KB)

11103_2018_725_MOESM10_ESM.pptx

Supplementary material 10 a. Schematic representation of possible monolignol-derived product biosynthesis in plant cell [adapted from Wang et al. (2013)] and b. regulation network controlling secondary cell wall biosynthesis (adapted from ADDIN EN.CITE (Cassan-Wang et al. 2013; Nakano et al. 2015; Wang and Dixon 2012; Zhao and Dixon 2011; Zhong and Ye 2009). BGLU, β-Glucosidases; CAD, Cinnamyl Alcohol Dehydrogenase; CCR, Cinnamoyl-CoA Reductase; CES, Cellulose Synthase; CTL, Chitinase and Chitinase-Like; DIR, dirigent protein; GT, glucosyltransferase; LAC, laccase; PCBER, PhenylCoumaran Benzylic Ether Reductase; PME, Pectin Methyl Esterases; PMEI, Pectin Methyl Esterase Inhibitors; POX, peroxidase. (PPTX 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbin, C., Drouet, S., Markulin, L. et al. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol Biol 97, 73–101 (2018). https://doi.org/10.1007/s11103-018-0725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0725-x

Keywords

Navigation