Skip to main content
Log in

Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing.

Abstract

Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene–phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpert K, Grandillo S, Tanksley S (1995) fw 2.2: a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theor Appl Genet 91:994–1000

    CAS  PubMed  Google Scholar 

  • Azzi L, Deluche C, Gevaudant F, Frangne N, Delmas F, Hernould M, Chevalier C (2015) Fruit growth-related genes in tomato. J Exp Bot 66:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D (2013) Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of Foxtail Millet. PLoS ONE 8:e73514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genom 12:304

    Article  CAS  Google Scholar 

  • Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A (2010) Manipulation of FASTQ data with galaxy. Bioinformatics 26:1783–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164:43–51

    Article  CAS  Google Scholar 

  • Cao K, Zheng ZJ, Wang LR, Liu X, Zhu GR, Fang WC, Cheng SF, Zeng P, Chen CW, Wang XW, Xie M, Zhong X, Wang XL, Zhao P, Bian C, Zhu YL, Zhang JH, Ma GS, Chen CX, Li YJ, Hao FG, Li Y, Huang GD, Li YX, Li HY, Guo J, Xu X, Wang J (2014) Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415

    PubMed  PubMed Central  Google Scholar 

  • Cheng Y-J, Guo W-W, Yi H-L, Pang X-M, Deng X (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Reporter 21:177–178

    Article  Google Scholar 

  • Choi H-S (2005) Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J Agric Food Chem 53:1642–1647

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Garcia-Lor A, Ollitrault P, Navarro L (2016) Fine mapping for identification of citrus alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1948

    PubMed  PubMed Central  Google Scholar 

  • Datta S, Datta S, Kim S, Chakraborty S, Gill RS (2010) Statistical analyses of next generation sequence data: a partial overview. J Proteomics Bioinform 3:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De FP, Stegmeir T, Cabrera A, Van Der Knapp E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Querogarcia J, Campoy JA (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breeding 32:311–326

    Article  Google Scholar 

  • Deikman J, Fischer RL (1988) Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35:W297–W299

    Article  Google Scholar 

  • Gillaspy G, Bendavid H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Hirakawa H, Shirasawa K, Ohyama A, Fukuoka H, Aoki K, Rothan C, Sato S, Isobe S, Tabata S (2013) Genome-wide SNP genotyping to infer the effects on gene functions in tomato. DNA Res 20:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Moharana KC, Shankar R, Kumari R, Garg R (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J 12:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jiao WB, Huang D, Xing F, Hu YB, Deng XX, Xu Q, Chen LL (2013) Genome-wide characterization and expression analysis of genetic variants in sweet orange. Plant J 75:954–964

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Im K-H, Savka MA, Wu M-J, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117

    Article  CAS  PubMed  Google Scholar 

  • Khan MRG, Ai XY, Zhang JZ (2013) Genetic regulation of flowering time in annual and perennial plants. Wiley Interdisc Rev 5:347–359

    Article  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion J-P, Le Paslier M-C, Brunel D, Suda K, Minakuchi Y (2013) Genome-wide analysis of intraspecific DNA polymorphism in ‘Micro-Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol 55:445–454

    Article  PubMed  Google Scholar 

  • Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyasako A, Bernhard R (1983) Volatile constituents of the essential oil of kumquat. J Food Sci 48:1807–1812

    Article  CAS  Google Scholar 

  • Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224–236

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S-B, Xie Z-Z, Hu C-G, Zhang J-Z (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47

    PubMed  PubMed Central  Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424

    Article  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monforte AJ, Diaz A, Caño-Delgado A, Van Der Knapp E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    Article  CAS  PubMed  Google Scholar 

  • Montanari S, Saeed M, Knabel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagne D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in european pear and interspecific Pyrus hybrids. PLoS ONE 8:e77022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z (2013) A survey of tools for variant analysis of next-generation genome sequencing data. Briefings Bioinform 15:256–278

    Article  Google Scholar 

  • Paran I, Knaap EVD (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3152

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7:e29453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nature 5:16–18

    Google Scholar 

  • Shen S, Park JW, Lu Z-x, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci 111:E5593–E5601

    Google Scholar 

  • Stower H (2013) Population genomics: characterizing indels. Nat Rev Genet 14:302–302

    Google Scholar 

  • Sun L, Zhang Q, Xu Z, Yang W, Guo Y, Lu J, Pan H, Cheng T, Cai M (2013) Genome-wide DNA polymorphisms in two cultivars of mei (Prunus mume sieb. et zucc.). BMC Genet 14:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    Article  CAS  Google Scholar 

  • Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols 7:562–578

    Article  CAS  PubMed  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Munoz-Sanz JV, Ibanez V, Herrero-Ortega A, Aleza P, Perez-Perez J, Ramon D, Brunel D, Luro F, Chen CX, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astua J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M (2016) Genome-wide sequence variation identification and floral-associated trait comparisons based on the re-sequencing of the ‘Nagafu No. 2’ and ‘Qinguan’ varieties of apple (Malus domestica Borkh.). Front Plant Sci 7:908

    PubMed  PubMed Central  Google Scholar 

  • Zeballos JL, Abidi W, Gimenez R, Monforte AJ, Moreno MA, Gogorcena Y (2016) Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genet Genomes 12:37

    Article  Google Scholar 

  • Zhang JZ, Li ZM, Yao JL, Hu CG (2009) Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene 430:95–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Sebolt AM, Sooriyapathirana SS, Wang D, Bink MC, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    Article  CAS  Google Scholar 

  • Zhang JZ, Liu SR, Hu CG (2016) Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research. DNA Res 23:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang SY, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Shi C, Austin RS, Merico D, Munholland S, Marsolais F, Navabi A, Crosby WL, Pauls KP, Yu K (2013) Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breed 33:769–778

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31471863, 31372046, 31672110 and 31772252).

Author information

Authors and Affiliations

Authors

Contributions

JJZ, CGH, JZZ conceived the research plan and supervised the experiments, TJL and YPL performed the experiments and analyzed the data, JJZ and JZZ drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jing-Jing Zhou or Chun-Gen Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

. The average fruit size and weight of Clementine mandarin and kumquat at maturity. (JPG 2577 KB)

Figure S2

. Evolutionary comparisons of Clementine mandarin and kumquat with other citrus genomes. The resequencing data of some citrus from a previous study (Wu et al. 2014), including sour orange (SRX372786), sweet orange (SRX372703), low-acid pumelo (SRX372702), Chandler pumelo (SRX372688), Willowleaf mandarin (SRX372685), W. Murcott mandarin (SRX372687), Ponkan mandarin (SRX372665), and Clementine mandarin (SRX371962). The SNPhylo software package was used with the SNP data set from these species to generate a maximum-likelihood phylogenetic tree with default parameters. Blue indicates the citrus species in this study. (JPG 1164 KB)

Figure S3

. Landscape of the genome variation of Clementine mandarin vs. kumquat. (JPG 3196 KB)

Figure S4

.The expression pattern of fruit-development-related genes from previous reports were investigated by real-time PCR. Relative transcript levels are calculated by real-time PCR with β-actin as the standard. Data are means ± SE of four separate measurements. (JPG 897 KB)

Figure S5

. The alternative splicing pattern of three selected genes at different developmental stages of Clementine mandarin and kumquat. (JPG 169 KB)

Supplementary material 6 (XLSX 2831 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TJ., Li, YP., Zhou, JJ. et al. Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). Plant Mol Biol 96, 493–507 (2018). https://doi.org/10.1007/s11103-018-0712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0712-2

Keywords

Navigation