Skip to main content
Log in

WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plastid-encoded plastid RNA polymerase (PEP), a dominant RNA polymerase in mature chloroplasts, consists of core subunits and peripheral subunits. Despite the importance of the peripheral subunits in control of PEP activity it is unclear how they interact with one another to exert physiological effects on chloroplast development and plant growth, especially in rice. Here, we report a mutant, designated wsl3 that lacks a peripheral subunit in rice. We isolated the WSL3 gene encoding an essential peripheral subunit of rice PEP complex, OsPAP1/OspTAC3 by map-based cloning, and verified its function by complementation analysis. The wsl3 mutant showed a typical expression pattern of plastid-encoded genes, suggesting that PEP activity was impaired. Using immunofluorescent labeling and immunoblotting, we found that WSL3 was localized to the chloroplast and associated with the nucleoid. In addition, we demonstrated that WSL3 interacted with PEP subunits in Y2H, BiFC and pull-down experiments. Furthermore, a cpDNA IP assay revealed that WSL3 was associated with the PEP complex during the entire transcription process. We provide evidence suggesting that WSL3 is essential for early chloroplast development by interacting with subunits of the PEP complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aravind L, Koonin EV (2000) SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börner T, Aleynikova AY, Zubo YO, Kusnetsov VV (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta 1847:761–769

    Article  PubMed  Google Scholar 

  • Briat JF, Laulhere JP, Mache R (1979) Transcription activity of a DNA–protein complex isolated from spinach plastids. Eur J Biochem 98:285–292

    Article  CAS  PubMed  Google Scholar 

  • Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang G (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Galvao RM, Li M, Burger B, Bugea J, Bolado J, Chory J (2010) Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141:1230–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Cheng ZJ, Ma XD, Wu H, Liu YL, Zhou K, Chen YL, Ma WW, Bi JC, Zhang X, Guo XP, Wang JL, Lei CL, Wu FQ, Lin QB, Liu YQ, Liu LL, Jiang L (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang HY, Wan JM (2013) A rice Virescent-Yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162:1867–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN (2011) A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol 157:1733–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia M, Myouga F, Takechi K, Sato H, Nabeshima K, Nagata N, Takio S, Shinozaki K, Takano H (2008) An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant J 53:924–934

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. Embo J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Bogorad L (1990) Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci USA 87:1531–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hübschmann T, Börner T (1998) Characterisation of transcript initiation sites in ribosome-deficient barley plastids. Plant Mol Biol 36:493–496

    Article  PubMed  Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman FA, Vallon O (2010) MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22:234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett 586:211–216

    Article  CAS  PubMed  Google Scholar 

  • Kindgren P, Strand A (2015) Chloroplast transcription, untangling the Gordian knot. New Phytol 206:889–891

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Krupinska K (2009) Nuclear regulators with a second home in organelles. Trends Plant Sci 14:194–199

    Article  CAS  PubMed  Google Scholar 

  • Krupinska K, Melonek J, Krause K (2013) New insights into plastid nucleoid structure and functionality. Planta 237:653–664

    Article  CAS  PubMed  Google Scholar 

  • Kusumi K, Mizutani A, Nishimura M, Iba K (1997) A virescent gene V 1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J 12:1241–1250

    Article  CAS  Google Scholar 

  • Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K (2010) Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol 27:85

    Article  CAS  Google Scholar 

  • Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Lin QB, Wang D, Dong H, Gu SH, Cheng ZJ, Gong J, Qin RZ, Jiang L, Li G, Wang JL, Wu FQ, Guo XP, Zhang X, Lei CL, Wang HY, Wan JM (2012) Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 3:752

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lysenko EA, Kuznetsov VV (2005) Plastid RNA polymerases. Mol Biol 39:762–775

    Article  CAS  Google Scholar 

  • Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:156–189

    Article  CAS  PubMed  Google Scholar 

  • Marechal A, Parent JS, Veronneau-Lafortune F, Joyeux A, Lang BF, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci USA 106:14693–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20:3148–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Zhang Y, Lv J, Zhang JH, Li P, Shi XL, Wang YF, Zhang HL, He ZH, Teng S (2012) Characterization and fine mapping of a novel rice albino mutant low temperature albino 1. J Genet Genomics 39:385–396

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18:186–194

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfalz J, Holtzegel U, Barkan A, Weisheit W, Mittag M, Pfannschmidt T (2015) ZmpTAC12 binds single-stranded nucleic acids and is essential for accumulation of the plastid-encoded polymerase complex in maize. New Phytol 206:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Link G (1994) Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol Biol 25:69–81

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, Grübler B, Hommel E, Lerbs-Mache S (2015) Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot 66:6957–6973

    Article  CAS  PubMed  Google Scholar 

  • Prikryl J, Watkins KP, Friso G, van Wijk KJ, Barkan A (2008) A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss T, Link G (1985) Characterization of transcriptionally active DNA–protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.) Eur J Biochem 148:207–212

    Article  CAS  PubMed  Google Scholar 

  • Ren YL, Wang YH, Liu F, Zhou KN, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma WW, Han XH, Zhang X, Guo XP, Wu FQ, Cheng ZJ, Wang J, Lei CL, Lin QB, Jiang L, Wu CY, Bao YQ, Wang HY, Wan JM (2014) GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell 26:410–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushlow KE, Hallick RB (1982) Isolation and purification of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. In: Edelman M, Hallick RB, Chua RB (eds) Methods in chloroplast molecular biology. Elsevier Press, Amsterdam, pp 543–550

    Google Scholar 

  • Sato N, Albrieux C, Joyard J, Douce R, Kuroiwa T (1993) Detection and characterization of a plastid envelope DNA-binding protein which may anchor plastid nucleoids. Embo J 12:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    Article  CAS  PubMed  Google Scholar 

  • Steiner S, Schroter Y, Pfalz J, Pfannschmidt T (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP, Cheng ZJ, Lei CL, Qi CK, Jiang L, Wang HY, Wan JM (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159:227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suck R, Zeltz P, Falk J, Acker A, Kossel H, Krupinska K (1996) Transcriptionally active chromosomes (TACs) of barley chloroplasts contain the alpha-subunit of plastome-encoded RNA polymerase. Curr Genet 30:515–521

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K (2004) The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996

    Article  CAS  PubMed  Google Scholar 

  • Sun XW, Feng PQ, Xu XM, Guo HL, Ma JF, Chi W, Lin RC, Lu CM, Zhang LX (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477

    Article  PubMed  Google Scholar 

  • Swiatecka-Hagenbruch M, Liere K, Börner T (2007) High diversity of plastidial promoters in Arabidopsis thaliana. Mol Gen Genomics 277:725–734

    Article  CAS  Google Scholar 

  • Tan JJ, Tan ZH, Wu FQ, Sheng PK, Heng YQ, Wang XH, Ren YL, Wang JL, Guo XP, Zhang X, Cheng ZJ, Jiang L, Liu XM, Wang HY, Wan JM (2014) A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol Plant 7: 1329–1349

    Article  CAS  PubMed  Google Scholar 

  • Waadt R, Kudla J (2008) In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). Cold Spring Harb Protoc 2008:t4995

    Article  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Ren YL, Liu X, Jiang L, Chen LM, Han XH, Jin MN, Liu SJ, Liu F, Lv J, Zhou KN, Su N, Bao YQ, Wan JM (2010) OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J 64:812–824

    Article  CAS  PubMed  Google Scholar 

  • Williams-Carrier R, Zoschke R, Belcher S, Pfalz J, Barkan A (2014) A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol 164:239–248

    Article  CAS  PubMed  Google Scholar 

  • Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T (2012) Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci USA 109:7541–7546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SC, Cho SH, Sugimoto H, Li J, Kusumi K, Koh HJ, Iba K, Paek NC (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu QB, Lu Y, Ma Q, Zhao TT, Huang C, Zhao HF, Zhang XL, Lv RH, Yang ZN (2013) TAC7, an essential component of the plastid transcriptionally active chromosome complex, interacts with FLN1, TAC10, TAC12 and TAC14 to regulate chloroplast gene expression in Arabidopsis thaliana. Physiol Plant 148:408–421

    Article  CAS  PubMed  Google Scholar 

  • Yu QB, Huang C, Yang ZN (2014) Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Front Plant Sci 5:316

    PubMed  PubMed Central  Google Scholar 

  • Zhelyazkova P, Sharma CM, Forstner KU, Liere K, Vogel J, Börner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong LL, Zhou W, Wang HJ, Ding SH, Lu QT, Wen XG, Peng L, Zhang LX, Lu CM (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25:2925–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou KN, Ren YL, Lv J, Wang YH, Liu F, Zhou F, Zhao SL, Chen SH, Peng C, Zhang X, Guo XP, Cheng ZJ, Wang JL, Wu FQ, Jiang L, Wan JM (2013) Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237:279–292

    Article  CAS  PubMed  Google Scholar 

  • Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the 863 Program (2014AA10A603-15), National Science and Technology Support Program (2013BAD01B02-16), a project from the Ministry of Agriculture of China for Transgenic Research (2014ZX08001-004), Jiangsu Science and Technology Development Program (BE2013301), Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, P. R. China, and Jiangsu Collaborative Innovation Center for Modern Crop Production.

Author contributions

Jianmin Wan supervised the project. Liwei Wang performed almost all the experiments. Liwei Wang wrote the paper and Chunming Wang revised the paper. Yihua Wang identified the wsl3 mutant. Liwei Wang, Yihua Wang and Mei Niu performed genetic analysis and mapping of WSL3. Liwei Wang, Yulong Ren, Kunneng Zhou and Huan Zhang performed subcellular localization of WSL3 protein. Liwei Wang, Yulong Ren, Qibing Lin and Fuqing Wu performed some of the BiFC assay, and Pull-Down assay. Xin Zhang, Xiuping Guo, Ling Jiang and Shanshan Zhu generated the transgenic plants. Zhijun Cheng, Jiulin Wang, Cailin Wang, Jie Wang and Zhichao Zhao cultivated the transgenic plants in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Wan.

Additional information

Liwei Wang and Chunming Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2827 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, C., Wang, Y. et al. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol 92, 581–595 (2016). https://doi.org/10.1007/s11103-016-0533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0533-0

Keywords

Navigation