Skip to main content
Log in

Functional characterization of a Glycine soja Ca2+ATPase in salt–alkaline stress responses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

It is widely accepted that Ca2+ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca2+ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca2+ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca2+ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca2+ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bonza MC, De Michelis MI (2011) The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biol (Stuttg) 13:421–430

    Article  CAS  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Xu D, Wang D, Wu R, Zhang L, Zhu H, He Q, Yang B (2009) ROS-driven Akt dephosphorylation at Ser-473 is involved in 4-HPR-mediated apoptosis in NB4 cells. Free Radic Biol Med 47:536–547

    Article  CAS  PubMed  Google Scholar 

  • Cerana M, Bonza MC, Harris R, Sanders D, De Michelis MI (2006) Abscisic acid stimulates the expression of two isoforms of plasma membrane Ca2+-ATPase in Arabidopsis thaliana seedlings. Plant Biol (Stuttg) 8:572–578

    Article  CAS  Google Scholar 

  • Chung WS, Lee SH, Kim JC, Heo WD, Kim MC, Park CY, Park HC, Lim CO, Kim WB, Harper JF, Cho MJ (2000) Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12:1393–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean WL, Tanford C (1977) Reactivation of lipid-depleted Ca2+-ATPase by a nonionic detergent. J Biol Chem 252:3551–3553

    CAS  PubMed  Google Scholar 

  • Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu Z, Chen S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • DuanMu H, Wang Y, Bai X, Cheng S, Deyholos MK, Wong GK, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y (2015) Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics 15:651–660

    Article  CAS  PubMed  Google Scholar 

  • Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24:2101–2102

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153

    Article  PubMed  PubMed Central  Google Scholar 

  • George L, Romanowsky SM, Harper JF, Sharrock RA (2008) The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiol 146:716–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanikenne M, Baurain D (2013) Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Front Plant Sci 4:544

    PubMed  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    Article  CAS  PubMed  Google Scholar 

  • He X, Sambe MA, Zhuo C, Tu Q, Guo Z (2015) A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol Biol 87:645–654

    Article  CAS  PubMed  Google Scholar 

  • Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N (2013a) OsACA6, a P-type IIB Ca2+ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76:997–1015

    Article  CAS  PubMed  Google Scholar 

  • Huda KM, Banu MS, Tuteja R, Tuteja N (2013b) Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling. J Exp Bot 64:3099–3109

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Harper JF, Liang F, Sze H (2000a) Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain. Plant Physiol 122:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sze H, Harper JF (2000b) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97:6224–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, Moriyama H, Yakabe R, Entani T, Shimosato-Asano H, Ueki M, Tamiya G, Takayama S (2014) A pollen coat-inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. Plant Cell 26:636–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamrul Huda KM, Yadav S, Akhter Banu MS, Trivedi DK, Tuteja N (2013) Genome-wide analysis of plant-type II Ca2+ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. Plant Physiol Biochem 65:32–47

    Article  CAS  PubMed  Google Scholar 

  • Kamrul Huda KM, Akhter Banu MS, Yadav S, Sahoo RK, Tuteja R, Tuteja N (2014) Salinity and drought tolerant OsACA6 enhances cold tolerance in transgenic tobacco by interacting with stress-inducible proteins. Plant Physiol Biochem 82:229–238

    Article  CAS  PubMed  Google Scholar 

  • Kichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem Soc Trans 603:591–593

    Article  Google Scholar 

  • Kleist T, Luan S (2015) Constant change: dynamic regulation of membrane transport by calcium signaling networks keeps plants in tune with their environment. Plant Cell Environ. doi:10.1111/pce.12599

    Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq J, Martin F, Sanier C, Clement-Vidal A, Fabre D, Oliver G, Lardet L, Ayar A, Peyramard M, Montoro P (2012) Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80:255–272

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Kim HS, Han HJ, Moon BC, Kim CY, Harper JF, Chung WS (2007) Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett 581:3943–3949

    Article  CAS  PubMed  Google Scholar 

  • Limonta M, Romanowsky S, Olivari C, Bonza MC, Luoni L, Rosenberg A, Harper JF, De Michelis MI (2014) ACA12 is a deregulated isoform of plasma membrane Ca2+-ATPase of Arabidopsis thaliana. Plant Mol Biol 84:387–397

    Article  CAS  PubMed  Google Scholar 

  • Lucca N, Leon G (2012) Arabidopsis ACA7, encoding a putative auto-regulated Ca2+-ATPase, is required for normal pollen development. Plant Cell Rep 31:651–659

    Article  CAS  PubMed  Google Scholar 

  • Mao GL, Xu X, Zeng J, Yue ZH, Yang SJ (2012) Effects of desulfurization waste on calcium distribution, Ca2+-ATPase activity, and antioxidant characteristics of rice leaf under alkali stress. Ying Yong Sheng Tai Xue Bao 23:363–368

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CN, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Front Plant Sci 3:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peever TL, Higgins VJ (1989) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol 90:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Xi J, Du L, Suttle JC, Poovaiah BW (2012) Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol Biol 79:89–99

    Article  CAS  PubMed  Google Scholar 

  • Qudeimat E, Faltusz AM, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Natl Acad Sci USA 105:19555–19560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Park MJ, Park CM (2013) Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta 237:1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Huda KM, Banu MS, Gill SS, Tuteja R, Tuteja N (2014) OsACA6, a P-type 2B Ca2+ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta 240:809–824

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, Pandey A, Kapoor S, Tyagi AK, Pandey GK (2014) Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS J 281:894–915

    Article  CAS  PubMed  Google Scholar 

  • Spalding EP, Harper JF (2011) The ins and outs of cellular Ca2+ transport. Curr Opin Plant Biol 14:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Sun X, Zhao Y, Zhao C, Duanmu H, Yu Y, Ji W, Zhu Y (2014) Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS ONE 9:e89578

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wu Z, Han J, Zheng W, Yang C (2012) Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS ONE 7:e37817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Theerawitaya C, Cha-um S, Kirdmanee C, Takabe T (2014) Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars. Protoplasma 251:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genomics 1:8–14

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol Biol 87:317–327

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lu Z, He L (2014) Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench. Appl Biochem Biotechnol 173:1680–1691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the lab for discussions and comments on this manuscript. This work was supported by the National Natural Science Foundation of China (31171578), National basic scientific talent training fund projects (J1210069), the National Natural Science Foundation of China (31500204), the Natural Science Foundation of Heilongjiang Province (C2015035), and Graduate student innovation research project of Northeast Agricultural University (yjscx14056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Sun or Yanming Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2015_426_MOESM1_ESM.tif

Supplementary Fig. S1 Gene architecture and phylogenetic analyses of soybean ECAs. a Phylogenetic relationship among ECAs in soybean. b Representation of intron-exon and domain structures in ECAs proteins. The intron-exon structures were from Phytozome website. The domains found in the ECA subfamily contained cation transporter/ATPase N-terminus (red), E1-E2 ATPase (orange), haloacid dehalogenase-like hydrolase (purple) and cation transporter/ATPase C-terminus (blue). (TIFF 84 kb)

11103_2015_426_MOESM2_ESM.tif

Supplementary Fig. S2 Multiple amino acid sequence alignment of ECAs from soybean and Arabidopsis. The figure showed the conserved motifs (red boxes) and the predicted transmembrane domains (designated as M1-M10) (marked by red lines on the top). The amino acid sequences were aligned by the ClustalX software. The existence and position of transmembrane domains were verified and marked according to previous study (Chung et al. 2000). (TIFF 1817 kb)

11103_2015_426_MOESM3_ESM.tif

Supplementary Fig. S3 Expression patterns of ACA subfamily genes in Glycine soja under 50 mM NaHCO3 (pH 8.5) treatment based on the microarray data. a Expression patterns of ACAs in Glycine soja roots. b Expression patterns of ACAs in Glycine soja leaves. The color saturation reflected the log2 fold change (LogFC) to 0 h for each gene. Green color indicated higher transcript levels than 0 h, whereas green color meant lower transcript levels. (TIFF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Jia, B., Cui, N. et al. Functional characterization of a Glycine soja Ca2+ATPase in salt–alkaline stress responses. Plant Mol Biol 90, 419–434 (2016). https://doi.org/10.1007/s11103-015-0426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0426-7

Keywords

Navigation