Skip to main content
Log in

TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein–protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1–TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1–TaSGT1–TaHsp90.2 and TaRAR1–TaSGT1–TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1–TaSGT1–TaHsp90 complexes in regulating bread wheat growth and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with HSP90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 24:8069–8079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J (2008) Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144:312–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C et al (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boter M, Amigues B, Peart J et al (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cantu D, Yang B, Ruan R, Li K, Menzo V, Fu D, Chern M, Ronald PC, Dubcovsky J (2013) Comparative analysis of protein–protein interactions in the defense response of rice and wheat. BMC Genom 14:166

    Article  CAS  Google Scholar 

  • Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281:33739–33748

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant Microbe Interact 22:86–95

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15:1310–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn JS (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579:4513–4519

    Article  CAS  PubMed  Google Scholar 

  • Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  CAS  PubMed  Google Scholar 

  • Holt BF 3rd, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309:929–932

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Buchner J (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74:86–97

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391

    Article  CAS  PubMed  Google Scholar 

  • Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279:16511–16517

    Article  CAS  PubMed  Google Scholar 

  • Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17:1268–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JD, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14:979–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P (2013) Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC Plant Biol 13:106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Peart JR, Lu R, Sadanandom A et al (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99:10865–10869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  CAS  PubMed  Google Scholar 

  • Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39:279–295

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samakovli D, Thanou A, Valmas C, Hatzopoulos P (2007) Hsp90 canalizes developmental perturbation. J Exp Bot 58:3513–3524

    Article  CAS  PubMed  Google Scholar 

  • Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS ONE 2:e648

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulze-Lefert P (2004) Plant immunity: the origami of receptor activation. Curr Biol 14:R22–R24

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8:252–258

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Tai YS (2008) Interactome of signaling networks in wheat: the protein-protein interaction between TaRAR1 and TaSGT1. Mol Biol Rep 35:337–343

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Casais C, Ichimura K, Shirasu K (2003) Hsp90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100:11777–11782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thao NP, Chen L, Nakashima A, Hara S, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K (2007) RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 19:4035–4045

    Article  PubMed Central  PubMed  Google Scholar 

  • Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in arabidopsis, and their relative contributions are dependent on the r gene assayed. Plant Cell 14:1005–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter M, Chaban C, Schutze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao M, Li Q, Wang L, Wang J, Jeon JS, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant Microbe Interact 21:294–303

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J et al (2010) Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H (2011a) Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol 156:1508–1519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang GF, Wei X, Fan R et al (2011b) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90 s in the control of wheat seedling growth and disease resistance. New Phytol 191:418–431

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Qian C, Cao A et al (2013) The Hv-SGT1 gene from Haynaldia villosa contributes to resistances towards both biotrophic and hemi-biotrophic pathogens in common wheat (Triticum aestivum L.). PLoS ONE 8:e72571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protocol 2:1565–1572

    Article  CAS  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Boter M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH (2008) Structural and functional coupling of HSP90- and Sgt1-centred multi-protein complexes. EMBO J 27:2789–2798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39:269–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Li S, Deng Z et al (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Shichang Xu (Chinese Academy of Agricultural Science, Beijing, China) for providing stripe rust race Cy17 and advice on stripe rust fungus inoculation, and Dr. Peter Balint-Kurti (NC State University, Raleigh, USA) for critical reading of the manuscript. This work was supported by Ministry of Science and Technology of China (No. 2013CB127700) and Chinese Academy of Sciences (No. KSCX2-EW-N-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guan-Feng Wang, Daowen Wang or Xiangqi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 2236 kb)

Supplementary material 2 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GF., Fan, R., Wang, X. et al. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. Plant Mol Biol 87, 577–589 (2015). https://doi.org/10.1007/s11103-015-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0298-x

Keywords

Navigation