Skip to main content
Log in

Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is the causing agent of the grey mold disease in more than 200 crop species. While signaling pathways leading to the basal resistance against this fungus are well described, the role of the import of sugars into host cells remains to be investigated. In Arabidopsis thaliana, apoplastic hexose retrieval is mediated by the activity of sugar transport proteins (STPs). Expression analysis of the 14 STP genes revealed that only STP13 was induced in leaves challenged with B. cinerea. STP13-modified plants were produced and assayed for their resistance to B. cinerea and glucose transport activity. We report that STP13-deficient plants exhibited an enhanced susceptibility and a reduced rate of glucose uptake. Conversely, plants with a high constitutive level of STP13 protein displayed an improved capacity to absorb glucose and an enhanced resistance phenotype. The correlation between STP13 transcripts, protein accumulation, glucose uptake rate and resistance level indicates that STP13 contributes to the basal resistance to B. cinerea by limiting symptom development and points out the importance of the host intracellular sugar uptake in this process. We postulate that STP13 would participate in the active resorption of hexoses to support the increased energy demand to trigger plant defense reactions and to deprive the fungus by changing sugar fluxes toward host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657

    Article  PubMed  Google Scholar 

  • Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié M-C (2010) Disruption of the Bcchs3a Chitin Synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. Mol Plant Microbe Interact 23(10):1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Azevedo H, Conde C, Geros H, Tavares RM (2006) The non-host pathogen Botrytis cinerea enhances glucose transport in Pinus pinaster suspension-cultured cells. Plant Cell Physiol 47(2):290–298

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Sonnewald U (2006) Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 163(3):307–318

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60(1):379–406

    Article  CAS  Google Scholar 

  • Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63(11):3989–3998

    Article  CAS  PubMed  Google Scholar 

  • Bourque S, Lemoine R, Sequeira-Legrand A, Fayolle L, Delrot S, Pugin A (2002) The elicitor cryptogein blocks glucose transport in tobacco cells. Plant Physiol 130(4):2177–2187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581(12):2318–2324

    Article  PubMed  Google Scholar 

  • Büttner M (2010) The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol (Stuttg) 12(Suppl 1):35–41

    Article  Google Scholar 

  • Büttner M, Truernit E, Baier K, Scholz-Starke J, Sontheim M, Lauterbach C, Huss VAR, Sauer N (2000) AtSTP3, a green leaf-specific, low affinity monosaccharide-H + symporter of Arabidopsis thaliana. Plant, Cell Environ 23(2):175–184

    Article  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42(7):601–610

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P (2009) Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. New Phytol 183(4):1149–1162

    Article  CAS  PubMed  Google Scholar 

  • Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9(10):1825–1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132(2):821–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol 43(1):205–227

    Article  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10(13):751–757

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2000) Assimilate transport and partitioning in fungal biotrophic interactions. Funct Plant Biol 27(6):549–560

    Article  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8(5):793–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • La Camera S, L’Haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Metraux JP, Lamotte O (2011) The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. Plant J 68(3):507–519

    Article  PubMed  Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source to sink transport and regulation by environmental factors. Front Plant Sci 4:272

  • Mengiste T (2012) Plant immunity to necrotrophs. Ann Rev Phytopathol 50(1):267–294

    Article  CAS  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Carp M-J, Zuchman R, Ziv T, Horwitz BA, Gepstein S (2010) Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 73(4):709–720

    Article  CAS  PubMed  Google Scholar 

  • Norholm MH, Nour-Eldin HH, Brodersen P, Mundy J, Halkier BA (2006) Expression of the Arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Lett 580(9):2381–2387

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 28(1):489–521

    Article  CAS  Google Scholar 

  • Poschet G, Hannich B, Buttner M (2010) Identification and characterization of AtSTP14, a novel galactose transporter from Arabidopsis. Plant Cell Physiol 51(9):1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2(3):198–206

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54(382):513–524

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180(4):2237–2250

    Article  PubMed Central  PubMed  Google Scholar 

  • Rowe HC, Walley JW, Corwin J, Chan EKF, Dehesh K, Kliebenstein DJ (2010) Deficiencies in Jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6(4):e1000861

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz E, Ruffner HP (2002) Immunodetection of Botrytis-specific invertase in infected grapes. J Phytopathol 150(2):76–85

    Article  CAS  Google Scholar 

  • Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell Environ 32(3):271–285

    Article  CAS  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141(4):1248–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherson SM, Hemmann G, Wallace G, Forbes S, Germain V, Stadler R, Bechtold N, Sauer N, Smith SM (2000) Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J 24(6):849–857

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL (2011) Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol Plant 4(4):641–662

    Article  CAS  PubMed  Google Scholar 

  • Staats M, van Kan JAL (2012) Genome Update of Botrytis cinerea Strains B05.10 and T4. Eukaryot Cell 11(11):1413–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stadler R, Büttner M, Ache P, Hedrich R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N (2003) Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol 133(2):528–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Métraux J-P, Schoonbeek H-J (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JA (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11(10):1009–1016

    Article  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95(25):15107–15111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Cammue BPA, Broekaert WF (2001) The complexity of disease signalling in Arabidopsis. Curr Opin Immunol 13(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truernit E, Schmid J, Epple P, Illig J, Sauer N (1996) The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8(12):2169–2182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signalling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13(4):459–465

    Article  CAS  PubMed  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant, Cell Environ 26(1):125–149

    Article  Google Scholar 

  • van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11(5):247–253

    Article  PubMed  Google Scholar 

  • Voegele R, Mendgen K (2011) Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica 179(1):41–55

    Article  Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA 98(14):8133–8138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8(5):561–580

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Kanai M, Osakabe Y, Ohiraki H, Shinozaki K, Yamaguchi-Shinozaki K (2011) Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions. J Biol Chem 286(50):43577–43586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Pauline Lemonnier and Florian Veillet are supported by Grants from the French Ministry of Higher Education and Research, and the Région Poitou–Charentes, respectively. We are grateful to Vincent Lebeurre and Bruno Faure for helping us producing numerous plants used in this study. Antoine Plasseraud Desgranges is acknowledged for his help in the correction of the manuscript. We would like to thank all our colleagues for inspiring discussions. The CNRS, the University of Poitiers and the Région Poitou–Charentes are gratefully acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain La Camera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_198_MOESM1_ESM.tif

Fig. S1. STP13 mRNA accumulation in STP13OE-6 plants. Plants were sprayed with mock solution or B. cinerea suspension (5.104 conidia.ml−1). Healthy (0 hpi) or treated leaves from at least 3 plants were harvested at indicated time points. The STP13 transcript levels were quantified by RT-qPCR. Data are expressed as normalized expression (no unit) to the plant reference gene At4g26410 expression level (Czechowski et al. 2005). Data are mean ± SE from 2 independent experiments. STP13 expression level of B. cinerea infected WT plants (48 hpi) is indicated. B.c.: B. cinerea. hpi: hours post-inoculation (TIFF 7185 kb)

11103_2014_198_MOESM2_ESM.tif

Fig. S2. Disease phenotype of wild-type (WT) and C2-7 plants infected with B. cinerea. A construct including the cDNA corresponding to STP13 mRNA driven by the CaMV35S promoter was introduced into stp13-2. In the resulting plants (named C2-7), leaves of five-week-old plants have been used for inoculation tests. A. Lesion diameters observed on WT and C2-7 plants 3 days after inoculation with 6 µl droplets containing 104 conidia.ml−1. Data represent the mean (± SE) lesion diameter from 4 independent experiments. In each experiment, at least 5 plants per genotype were infected with B. cinerea. No significant difference was determined between WT and C2-7 plants according to a permutation with general scores test (P < 0,05). B. Lesion size distribution observed on WT and C2-7 plants infected with B. cinerea. Plants were drop-inoculated and diameters of necrotic lesions (LD) were measured after 3 days. Lesions were grouped into 3 classes according to their size: small (LD < WT first quartile), medium (LD = WT interquartile range) and large (LD > WT third quartile). The percentage of lesion size distribution from 4 independent experiments is shown. No significant difference between WT and C2-7 was determined by a Chi square test (P < 0,05) (TIFF 5987 kb)

Fig. S3. Six week-old wild-type (WT), stp13-2 and STP13OE-6 plants grown on soil (TIFF 1482 kb)

11103_2014_198_MOESM4_ESM.pdf

Table S2 Table reporting the results of the three-way ANOVA test of PDF1.2 and PAD3 expression. Genotype: wild-type, stp13-2 or STP13OE-6 plants. Time: 0, 24, 48 or 72 h post-treatment. Treatment: mock or B. cinerea (**P < 0,01; ***P < 0,001; nsd: not statistically different)(PDF 18 kb)

Table S1 List of primers used for RT-qPCR analysis (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemonnier, P., Gaillard, C., Veillet, F. et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea . Plant Mol Biol 85, 473–484 (2014). https://doi.org/10.1007/s11103-014-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0198-5

Keywords

Navigation