Skip to main content
Log in

Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 −/−, by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 +/+ genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5′ MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    CAS  PubMed  Google Scholar 

  • Abuqamar S, Chai MF, Luo H, Song F, Mengiste T (2008) Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20:1964–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albert M, Werner M, Proksch P, Fry SC, Kaldenhoff R (2004) The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biol (Stuttg) 6:402–407

    CAS  Google Scholar 

  • An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R (2006a) Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 172:563–576

    CAS  PubMed  Google Scholar 

  • An Q, Hückelhoven R, Kogel KH, van Bel AJ (2006b) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019

    CAS  PubMed  Google Scholar 

  • Antoniw JF, Pierpoint WS (1978) The purification and properties of one of the ‘b” proteins from virus-infected tobacco plants. J Gen Virol 39:343–350

    CAS  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkinson HJ, Harris PD (1989) Changes in nematode antigens recognized by monoclonal antibodies during early infections of soya bean with cyst nematode Heterodera glycines. Parasitology 98:479–487

    Google Scholar 

  • Babcock M, Macleod GT, Leither J, Pallanck L (2004) Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles. J Neurosci 24:3964–3973

    CAS  PubMed  Google Scholar 

  • Banfield DK, Lewis MJ, Pelham HR (1995) A SNARE-like protein required for traffic through the Golgi complex. Nature 375:806–809

    CAS  PubMed  Google Scholar 

  • Barszczewski M, Chua JJ, Stein A, Winter U, Heintzmann R, Zilly FE, Fasshauer D, Lang T, Jahn R (2008) A novel site of action for alpha-SNAP in the SNARE conformational cycle controlling membrane fusion. Mol Biol Cell 19:776–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    CAS  PubMed  Google Scholar 

  • Bernard RL, Cremeens CR (1988) Registration of ‘Williams 82’ Soybean. Crop Sci 28:1027

    Google Scholar 

  • Boyd RS, Duggan MJ, Shone CC, Foster KA (1995) The effect of botulinum neurotoxins on the release of insulin from the insulinoma cell lines HIT-15 and RINm5F. J Biol Chem 270:18216–18218

    CAS  PubMed  Google Scholar 

  • Branch C, Hwang CF, Navarre DA, Williamson VM (2004) Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Mol Plant Microbe Interact 17:351–356

    CAS  PubMed  Google Scholar 

  • Bubeck J, Scheuring D, Hummel E, Langhans M, Viotti C, Foresti O, Denecke J, Banfield DK, Robinson DG (2008) The syntaxins SYP31 and SYP81 control ER-Golgi trafficking in the plant secretory pathway. Traffic 9:1629–1652

    CAS  PubMed  Google Scholar 

  • Burgess RW, Deitcher DL, Schwarz TL (1997) The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J Cell Biol 138:861–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Caldwell BE, Brim CA, Ross JP (1960) Inheritance of resistance of soybeans to the soybean cyst nematode, Heterodera glycines. Agron J 52:635–636

    Google Scholar 

  • Campbell P, Braam J (1998) Co- and/or post-translational modifications are critical for TCH4 XET activity. Plant J 15:553–561

    CAS  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatre L, Wattelet-Boyer V, Melser S, Maneta-Peyret L, Brandizzi F, Moreau P (2009) A novel di-acidic motif facilitates ER export of the syntaxin SYP31. J Exp Bot 60:3157–3165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, pp 1104–1115

  • Clary DO, Griff IC, Rothman JE (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61:709–721

    CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  PubMed  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless A, Wang J, Hughes TJ, Willis DK, Clemente T, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    CAS  PubMed  Google Scholar 

  • Cotrufo T, Pérez-Brangulí F, Muhaisen A, Ros O, Andrés R, Baeriswyl T, Fuschini G, Tarrago T, Pascual M, Ureña J, Blasi J, Giralt E, Stoeckli ET, Soriano E (2011) A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones. J Neurosci 31:14463–14480

    CAS  PubMed  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    CAS  Google Scholar 

  • DeBello WM, O’Connor V, Dresbach T, Whiteheart SW, Wang SS, Schweizer FE, Betz H, Rothman JE, Augustine GJ (1995) SNAP-mediated protein–protein interactions essential for neurotransmitter release. Nature 373:626–630

    CAS  PubMed  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endo BY (1964) Penetration and development of Heterodera glycines in soybean roots and related and related anatomical changes. Phytopathology 54:79–88

    Google Scholar 

  • Endo BY (1965) Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology 55:375–381

    CAS  Google Scholar 

  • Endo BY (1991) Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Revue Nématol 14:73–84

    Google Scholar 

  • Esmon B, Novick P, Schekman R (1981) Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25:451–460

    CAS  PubMed  Google Scholar 

  • Falk A., Feys B.J., Frost L.N., Jones J.D.G., Daniels M.J., Parker J.E. (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl Acad. Sci. USA 96:3292–3297

    Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Genovesi V, Fornalé S, Fry SC, Ruel K, Ferrer P, Encina A, Sonbol FM, Bosch J, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2008) ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana. J Exp Bot 59:875–889

    CAS  PubMed  Google Scholar 

  • Gerber SH, Rah JC, Min SW, Liu X, de Wit H, Dulubova I, Meyer AC, Rizo J, Arancillo M, Hammer RE, Verhage M, Rosenmund C, Südhof TC (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321:1507–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gipson I, Kim KS, Riggs RD (1971) An ultrastructural study of syncytium development in soybean roots infected with Heterodera glycines. Phytopathol 61:347–353

    Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glick BS, Rothman JE (1987) Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326:309–312

    CAS  PubMed  Google Scholar 

  • Golden AM, Epps JM, Riggs RD, Duclos LA, Fox JA, Bernard RL (1970) Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glycines). Plant Dis Report 54:544–546

    Google Scholar 

  • Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardwick KG, Pelham HR (1992) SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J Cell Biol 119:513–521

    CAS  PubMed  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334:1401–1404

    CAS  PubMed  Google Scholar 

  • Henriksson H, Denman SE, Campuzano ID, Ademark P, Master ER, Teeri TT, Brumer H 3rd (2003) N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A. Biochem J 375:61–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong K–K, Chakravarti A, Takahashi JS (2004) The gene for soluble N-ethylmaleimide sensitive factor attachment protein a is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA 101:1748–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Göbel U, Stüber K, Pislewska-Bednarek M, Loraine A, Schulze-Lefert P, Somerville S, Panstruga R (2010) A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. PNAS 107:21896–21901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12:3690–3702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itin C, Rancaño C, Nakajima Y, Pfeffer SR (1997) A novel assay reveals a role for soluble N-ethylmaleimide-sensitive fusion attachment protein in mannose 6-phosphate receptor transport from endosomes to the trans Golgi network. J Biol Chem 272:27737–27744

    CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Jones MGK (1981) The development and function of plant cells modified by endoparasitic nematodes. In: Zuckerman BM, Rohde RA (eds) Plant parasitic nematodes, vol III. Academic Press, New York, pp 255–279

    Google Scholar 

  • Jones MGK, Northcote DH (1972) Nematode-induced syncytium-a multinucleate transfer cell. J Cell Sci 10:789–809

    CAS  PubMed  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J, Dooner H, Klessig DF (2000) Resistance to turnip crinkle virus in Arabidopsis requires two host genes and is salicylic acid dependent but NPR1, ethylene and jasmonate independent. Plant Cell 12:677–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser CA, Schekman R (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61:723–733

    CAS  PubMed  Google Scholar 

  • Kalde M, Nühse TS, Findlay K, Peck SC (2007) The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 104:11850–11855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kallas AM, Piens K, Denman SE, Henriksson H, Fäldt J, Johansson P, Brumer H, Teeri TT (2005) Enzymatic properties of native and deglycosylated hybrid aspen (Populus tremulaxtremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem J 390:105–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of ‘pathogenesis-related’ proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J 6:3209–3212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kauffmann S, Legrand M, Fritig B (1990) Isolation and characterization of six pathogenesis-related (PR) proteins of Samsun NN tobacco. Plant Mo1 Biol 14:381–390

    CAS  Google Scholar 

  • Kim DG, Riggs RD, Mauromoustakos A (1998) Variation in Resistance of Soybean Lines to Races of Heterodera glycines. J Nematol 30:184–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Hyten DL, Bent AF, Diers BW (2010) Fine mapping of the SCN resistance locus rhg1-b from PI 88788. The Plant Genome 3:81–89

    Google Scholar 

  • Klink VP, Alkharouf N, MacDonald M, Matthews BF (2005) Laser capture microdissection (LCM) and analysis of Glycine max (soybean) syncytial cells formed by the soybean cyst nematode Heterodera glycines. Plant Mol Biol 59:969–983

    Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald MH, Matthews BF (2007) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean roots infected by soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    CAS  PubMed  Google Scholar 

  • Klink VP, MacDonald MH, Martins VE, Park S-C, Kim K-H, Baek S-H, Matthews BF (2008) MiniMax, a new diminutive Glycine max variety, with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell, Tissue Organ Cult 92:183–195

    CAS  Google Scholar 

  • Klink VP, Kim K-H, Martins VE, MacDonald MH, Beard HS, Alkharouf NW, Lee S-K, Park S-C, Matthews BF (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of the formation of female Heterodera glycines cysts during infection of Glycine max. Planta 230:53–71

    CAS  PubMed  Google Scholar 

  • Klink V.P., Overall C.C., Alkharouf N., MacDonald M.H., Matthews B.F. (2010) Microarray detection calls as a means to compare transcripts expressed within syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Journal of Biomedicine and Biotechnology 1-30

  • Klink VP, Thibaudeau G, Altig RG (2013) A novel sample preparation method that enables nucleic acid analysis from ultrathin sections. Microsc Microanal 19:1–7

    Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    CAS  PubMed  Google Scholar 

  • Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968

    CAS  PubMed  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and Genetic Requirements for Function of the Immune Response Regulator BOTRYTIS-INDUCED KINASE1 in Plant Growth, Ethylene Signaling, and PAMP-Triggered Immunity in Arabidopsis. Plant Cell 23:2831–2849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Legrand M, Kauffman S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis related proteins are chitinases. Proc Natl Acad Sci USA 84:6750–6754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    CAS  PubMed  Google Scholar 

  • Li J, Todd TC, Oakley TR, Lee J, Trick HN (2010) Host derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines. Planta 232:775–785

    CAS  PubMed  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    CAS  PubMed  Google Scholar 

  • Liu X., Liu S., Jamai A., Bendahmane A., Lightfoot D.A., Mitchum M.G., Meksem K. (2011) Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene Funct Integr Genomics DOI 10.1007/s10142-011-0225-4

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A. 107:496–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    CAS  PubMed  Google Scholar 

  • Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG (1997) Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 8:2659–2676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maris A, Suslov D, Fry SC, Verbelen JP, Vissenberg K (2009) Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot 60:3959–3972

    CAS  PubMed  Google Scholar 

  • Matsushima R, Hayashi Y, Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2003a) The ER body, a novel endoplasmic reticulum derived structure in Arabidopsis. Plant Cell Physiol 44:661–666

    CAS  PubMed  Google Scholar 

  • Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003b) A novel ER-derived compartment, the ER body, selectively accumulates a β- glucosidase with an ER-retention signal in Arabidopsis. Plant J 33:493–502

    CAS  PubMed  Google Scholar 

  • Matsye PD, Kumar R, Hosseini P, Jones CM, Tremblay A, Alkharouf NW, Matthews BF, Klink VP (2011) Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol 77:513–528

    CAS  PubMed  Google Scholar 

  • Matsye PD, Lawrence GW, Youssef RM, Kim K-H, Matthews BF, Lawrence KS, Klink VP (2012) The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. Plant Mol Biol 80:131–155

    CAS  PubMed  Google Scholar 

  • Matthews B, MacDonald MH, Thai VK, Tucker ML (2003) Molecular characterization of argenine kinase in the soybean cyst nematode (Heterodera glycines). Journal of Nematology 35:252–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E (2013) Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 237:1337–1357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazarei M, Elling AA, Maier TR, Puthoff DP, Baum TJ (2007) GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis. MPMI 20:107–119

    CAS  PubMed  Google Scholar 

  • McLean MD, Hoover GJ, Bancroft B, Makhmoudova A, Clark SM, Welacky T, Simmonds DH, Shelp BJ (2007) Identification of the full-length Hs1 pro1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1 pro1 cDNA. Can J Botany 85:437–441

    CAS  Google Scholar 

  • Melito S, Heuberger A, Cook D, Diers B, MacGuidwin A, Bent A (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol 10:104

    PubMed Central  PubMed  Google Scholar 

  • Melser S, Wattelet-Boyer V, Brandizzi F, Moreau P (2009) Blocking ER export of the Golgi SNARE SYP31 affects plant growth. Plant Signal Behav 4:962–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    CAS  PubMed  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine- rich repeat family of plant genes. Plant Cell 10:1307–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    CAS  PubMed  Google Scholar 

  • Morgan A, Burgoyne RD (1995) A role for soluble NSF attachment proteins (SNAPs) in regulated exocytosis in adrenal chromaffin cells. EMBO J 14:232–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neiman AM (1998) Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140:29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JG, Tylka GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novick P, Schekman R (1979) Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences U S A. 76:1858–1862

    CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    CAS  PubMed  Google Scholar 

  • Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25:461–469

    CAS  PubMed  Google Scholar 

  • Ogasawara K, Yamada K, Christeller JT, Kondo M, Hatsugai N, Hara-Nishimura I, Nishimura M (2009) Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant Cell Physiol 50:480–488

    CAS  PubMed  Google Scholar 

  • Pajonk S, Kwon C, Clemens N, Panstruga R, Schulze-Lefert P (2008) Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J Biol Chem 283:26974–26984

    CAS  PubMed  Google Scholar 

  • Peng R, Gallwitz D (2004) Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J 23:3939–3949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F, Zhang Y, Gulbins E, Bassi MT, Rosa P, Clementi E (2010) Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 285:40240–40251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peter F, Wong SH, Subramaniam VN, Tang BL, Hong W (1998) Alpha-SNAP but not gamma-SNAP is required for ER-Golgi transport after vesicle budding and the Rab1-requiring step but before the EGTA-sensitive step. J Cell Sci 111:2625–2633

    CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    CAS  PubMed  Google Scholar 

  • Ramalho-Santos J, Moreno RD, Sutovsky P, Chan AW, Hewitson L, Wessel GM, Simerly CR, Schatten G (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223:54–69

    CAS  PubMed  Google Scholar 

  • Rancour DM, Dickey CE, Park S, Bednarek SY (2002) Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol 130:1241–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raridan GJ, Delaney TP (2002) Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics 161:803–811

    Google Scholar 

  • Riggs RD, Schmitt DP (1988) Complete characterization of the race scheme for Heterodera glycines. Journal of Nematology 20:392–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riggs RD, Schmitt DP (1991) Optimization of the Heterodera glycines race test procedure. Journal of Nematology 23:149–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrı′guez F, Bustos MA, Zanetti MN, Ruete MC, Mayorga LS, Tomes CN (2011) α-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin. PLoS ONE 6:e21925

    Google Scholar 

  • Ross JP (1958) Host-Parasite relationship of the soybean cyst nematode in resistant soybean roots. Phytopathology 48:578–579

    Google Scholar 

  • Sakamoto AN, Lan VT, Puripunyavanich V, Hase Y, Yokota Y, Shikazono N, Nakagawa M, Narumi I, Tanaka A (2009) A UVB hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response. Plant J 60:509–517

    CAS  PubMed  Google Scholar 

  • Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV (2001a) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell 13:659–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderfoot AA, Farhah F, Assaad FF, Natasha V, Raikhel NV (2001b) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Google Scholar 

  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001c) Interactions between Syntaxins Identify at Least Five SNARE Complexes within the Golgi/Prevacuolar System of the Arabidopsis Cell. Mol Biol Cell 12:3733–3743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickerson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, pp 7–14

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Schulz JR, Wessel GM, Vacquier VD (1997) The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev Biol 191:80–87

    CAS  PubMed  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

    CAS  PubMed  Google Scholar 

  • Shah J, Kachroo PK, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574

    CAS  PubMed  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor—nucleotide binding site—leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    CAS  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    CAS  PubMed  Google Scholar 

  • Thompson GA Jr, Okuyama H (2000) Lipid-linked proteins of plants. Prog Lipid Res 39:19–39

    CAS  PubMed  Google Scholar 

  • van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JDG (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29:439–451

    PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jürgens G, Mayer U (2000) The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 2:1371–1374

    Google Scholar 

  • Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    CAS  PubMed  Google Scholar 

  • Woo KC (1979) Properties and intramitochondrial localization of serine hydroxymethyltransferase in leaves of higher plants. Plant Physiol 63:783–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Lu D, Kabbage M, Wei HL, Swingle B, Records AR, Dickman M, He P, Shan L (2011) Bacterial effector HopF2 suppresses Arabidopsis innate immunity at the plasma membrane. Mol Plant Microbe Interact 24:585–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wubben MJ, Jin J, Baum TJ (2008) Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic Acid [SA] and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. MPMI 21:424–443

    CAS  PubMed  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2001) Endoxyloglucan transferase is localized both in the cell plate and in the secretory pathway destined for the apoplast in tobacco cells. Plant Cell Physiol 42:292–300

    CAS  PubMed  Google Scholar 

  • Youssef R.M., MacDonald M.H., Brewer E.P., Bauchan G.R., Kim K-H., Matthews B.F. (2013) Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes. BMC Plant Biology (in press)

  • Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by the start-up support of Mississippi State University and the Department of Biological Sciences (DBS). The authors thank Dr. Larry Heatherly, the Mississippi Soybean Promotion Board and the soybean growers in the state of Mississippi for their continued support. The work is supported jointly between the College of Arts and Sciences (DBS) and the Mississippi Agricultural and Forestry Experimental Station (MAFES). The authors thank George Hopper, Reuben Moore and Wes Burger (MAFES) whose support has made the work possible. Dr. Scott Willard, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology (BMEP) at Mississippi State University provided greenhouse space. Additional greenhouse space was provided by Dr. Mike Phillips and managed through Eric Laiche of the Department of Plant and Soil Sciences at Mississippi State University. The authors thank Dr. Giselle Thibaudeau and Amanda Lawrence, Imaging and Analytical Technologies Center, Mississippi State University for imaging expertise and technical suggestions. Postdoctoral research support was provided to Aparna Krishnavajhala, through a competitive Special Research Initiative grant awarded by MAFES. Yixiu Pinnix (BMEP) provided technical support. Undergraduate research support was provided by Nishi Sunthwal, Christina Jones, Suchit Salian, Priyanka Gadre, Dollie Welch, Kim Anderson, John Clune, Hannah Burson, Chase Robinson, Brittany Ginn and Meghan Calhoun (DBS) and by James McKibben, Cody Roman and Micah Schneider (BMEP). The Shackouls Honors College is acknowledged. Further support was provided by the Office of Research and Economic Development, Mississippi State University through a competitive Research Initiation Program grant. The authors acknowledge Clarissa Balbalian, (BMEP) and Dr. Tom Allen, Delta Research and Extension Center (MAFES), Stoneville, MS for support during the course of the work. VPK acknowledges Dr. Ben Matthews and Dr. Perry Cregan at the USDA-ARS (Beltsville, MD) for support throughout the process that led to the present work. Dr. Katheryn Lawrence, Auburn University graciously provided support related to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Klink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_172_MOESM1_ESM.tif

Effect of G. max SYP38 and BIK1-6 RNAi on root growth. For all experiments, * = statistically significant p < 0.05. Control, roots transformed with the pRAP17 RNAi vector. SYP38-RNAi (n = 19); SYP38-RNAi roots, p = 0.499081; BIK1-6-RNAi (n = 19); BIK1-RNAi roots, p = 0.354595. Note: RNAi had no statistically significant effect (TIFF 4118 kb)

11103_2014_172_MOESM2_ESM.tif

RNAi of G. max SYP38 and BIK1-6 results in susceptibility to parasitism by H. glycines. For all experiments, * = statistically significant p < 0.05. SYP38-RNAi-R1 (n = 19); SYP38-RNAi-R1, FI = 1,200.00; p value = 0.009937*. SYP38-RNAi-R2 (n = 15); SYP38-RNAi-R2, FI = 1,538.00; p value = 0.00197416*. SYP38-RNAi-R3 (n = 11); SYP38-RNAi-R3, FI = 1063.64; p value = 0.0298544*. BIK1-6-RNAi-R1 (n = 19); BIK1-RNAi-R1, FI = 600.00; p value = 0.0174306*. BIK1-6-RNAi-R2 (n = 7); BIK1-RNAi-R2, FI = 1628.58; p value = 0.0175829*. BIK1-6-RNAi-R3 (n = 12); BIK1-RNAi-R3, FI = 1063.64; p value = 0.0348612* (TIFF 5883 kb)

11103_2014_172_MOESM3_ESM.tif

Signal peptide prediction for GmXTH43. Signal peptide was predicted using SignalP-4.1 (http://www.cbs.dtu.dk/services/SignalP/) on default (Petersen et al. 2011) (TIFF 1673 kb)

11103_2014_172_MOESM4_ESM.docx

N-glycosylation prediction for Gm-XTH43. N-glycosylation prediction using NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) on default. N-glycosylation was predicted for Gm-XTH43 (DOCX 18 kb)

11103_2014_172_MOESM5_ESM.docx

Gm-BIK1 paralogs having the MGXXXS/T N-myristoylation consensus sequence (highlighted in cyan). Accessions identified from http://phytozome.net/ (DOCX 18 kb)

PCR and qPCR primers (XLSX 14 kb)

11103_2014_172_MOESM7_ESM.xlsx

G. max homologs. SYP38, XTH43, NPR1-2, EDS1-2 and BIK1-6. Number scheme is based on chromosome positions, starting at nucleotide 1 on chromosome 1 and ending on the final nucleotide on chromosome 20. Accessions were identified at http://phytozome.net/ (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, S.R., Matsye, P.D., McNeece, B.T. et al. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines . Plant Mol Biol 85, 107–121 (2014). https://doi.org/10.1007/s11103-014-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0172-2

Keywords

Navigation