Skip to main content
Log in

The function of EHD2 in endocytosis and defense signaling is affected by SUMO

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulates many cellular processes. SUMOylation has been shown to regulate cellular localization and function of a variety of proteins, in some cases affecting nuclear import or export. We have previously characterized two EHDs (EH domain containing proteins) in Arabidospis and showed their involvement in plant endocytosis. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and the leucine rich repeat receptor like protein LeEix2, an effect that requires and intact coiled-coil domain. Inhibition of endocytosis of LeEix2 by EHD2 is effective in inhibiting defense responses mediated by the LeEix2 receptor in response to its ligand EIX. In the present work we demonstrate that SUMOylation of EHD2 appears to be required for EHD2-induced inhibition of LeEix2 endocytosis. Indeed, we found that a mutant form of EHD2, possessing a defective SUMOylation site, has an increased nuclear abundance, can no longer be SUMOylated and is no longer effective in inhibiting LeEix2 endocytosis or defense signaling in response to EIX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L (2006) Inhibition of DNA binding by differential SUMOylation of heat shock factors. Mol Cell Biol 26:955–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avni A, Bailey BA, Mattoo AK, Anderson JD (1994) Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts. Plant Physiol 106:1049–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey BA, Dean JF, Anderson JD (1990) An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv Xanthi leaves. Plant Physiol 94:1849–1854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey BA, Avni A, Li N, Mattoo AK, Anderson JD (1992) Nucleotide Sequence of the Nicotiana tabacum cv Xanthi Gene Encoding 1-aminocyclopropane-1-carboxylate synthase. Plant Physiol 100:1615–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bar M, Avni A (2009a) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Avni A (2009b) EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. Plant Signal Behav 4:682–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J 55:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Benjamin S, Weidberg H, Rapaport D, Pekar O, Nudelman M, Segal D, Hirschberg K, Katzav S, Ehrlich M, Horowitz M (2011) EHD2 mediates trafficking from the plasma membrane by modulating Rac1 activity. Biochem J 439:433–442

    Article  CAS  PubMed  Google Scholar 

  • Blume JJ, Halbach A, Behrendt D, Paulsson M, Plomann M (2007) EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp Cell Res 313:219–231

    Article  CAS  PubMed  Google Scholar 

  • Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  CAS  PubMed  Google Scholar 

  • Budhiraja R, Hermkes R, Muller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A (2009) Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol 149:1529–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carbone R, Fre S, Iannolo G, Belleudi F, Mancini P, Pelicci PG, Torrisi MR, Di Fiore PP (1997) eps15 and eps15R are essential components of the endocytic pathway. Can Res 57:5498–5504

    CAS  Google Scholar 

  • Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) SUMOylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol 74:33–45

    Article  CAS  PubMed  Google Scholar 

  • Colby T, Matthai A, Boeckelmann A, Stuible HP (2006) SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol 142:318–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Beer T, Hoofnagle AN, Enmon JL, Bowers RC, Yamabhai M, Kay BK, Overduin M (2000) Molecular mechanism of NPF recognition by EH domains. Nat Struct Biol 7:1018–1022

    Article  PubMed  Google Scholar 

  • Dean JFD, Gamble HR, Anderson JD (1989) The Ethylene Biosynthesis-Inducing Xylanase—Its Induction in Trichoderma-viride and certain plant-pathogens. Phytopathology 79:1071–1078

    Article  CAS  Google Scholar 

  • Di Fiore PP, Pelicci PG, Sorkin A (1997) EH: a novel protein–protein interaction domain potentially involved in intracellular sorting. Trends Biochem Sci 22:411–413

    Article  PubMed  Google Scholar 

  • Elbaz M, Avni A, Weil M (2002) Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9:726–733

    Article  CAS  PubMed  Google Scholar 

  • Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci USA 107:17415–17420

    Article  CAS  PubMed  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  CAS  PubMed  Google Scholar 

  • George M, Ying GG, Rainey MA, Solomon A, Parikh PT, Gao QS, Band V, Band H (2007) Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C-elegans. Bmc Cell Biol 8:3

    Google Scholar 

  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24

    Article  PubMed  Google Scholar 

  • Guilherme A, Soriano NA, Bose S, Holik J, Bose A, Pomerleau DP, Furcinitti P, Leszyk J, Corvera S, Czech MP (2004) EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem 279:10593–10605

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36:837–841

    Article  CAS  PubMed  Google Scholar 

  • Hanania U, Avni A (1997) High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J 12:113–120

    Article  CAS  Google Scholar 

  • Hanania U, Furman-Matarasso N, Ron M, Avni A (1999) Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J 19:533–541

    Article  CAS  PubMed  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Heras B, Drobak BK (2002) PARF-1: an Arabidopsis thaliana FYVE-domain protein displaying a novel eukaryotic domain structure and phosphoinositide affinity. J Exp Bot 53:565–567

    Article  CAS  PubMed  Google Scholar 

  • Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD (2004) Regulation and function of SUMO modification. J Biol Chem 279:53899–53902

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7:384–390

    Article  CAS  PubMed  Google Scholar 

  • Hotson A, Chosed R, Shu H, Orth K, Mudgett MB (2003) Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50:377–389

    Article  CAS  PubMed  Google Scholar 

  • Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26:4675–4689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen RB, La Cour T, Albrethsen J, Nielsen M, Skriver K (2001) FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains. Biochem J 359:165–173

    Article  CAS  PubMed  Google Scholar 

  • Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun DJ, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799–26802

    Article  CAS  PubMed  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  CAS  PubMed  Google Scholar 

  • Lehembre F, Badenhorst P, Muller S, Travers A, Schweisguth F, Dejean A (2000) Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol Cell Biol 20:1072–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lois LM, Lima CD, Chua NH (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15:1347–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin S, Nishimune A, Mellor JR, Henley JM (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447:321–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matarasso N, Schuster S, Avni A (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell 17:1205–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazur MJ, van den Burg HA (2012) Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front Plant Sci 3:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Melchior F (2000) SUMO–nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) SUMOylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106:5418–5423

    Article  CAS  PubMed  Google Scholar 

  • Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15:2308–2319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Yun DJ (2013) New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. Int Rev Cell Mol Biol 300:161–209

    Article  CAS  PubMed  Google Scholar 

  • Pekar O, Benjamin S, Weidberg H, Smaldone S, Ramirez F, Horowitz M (2012) EHD2 shuttles to the nucleus and represses transcription. Biochem J 444:383–394

    Article  CAS  PubMed  Google Scholar 

  • Pilecka I, Banach-Orlowska M, Miaczynska M (2007) Nuclear functions of endocytic proteins. Eur J Cell Biol 86:533–547

    Article  CAS  PubMed  Google Scholar 

  • Reeves PH, Murtas G, Dash S, Coupland G (2002) Early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129:5349–5361

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S (2007) Vesicle trafficking in plant immune responses. Cell Microbiol 9:1–8

    Article  CAS  PubMed  Google Scholar 

  • Roden J, Eardley L, Hotson A, Cao Y, Mudgett MB (2004) Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol Plant Microbe Interact 17:633–643

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salinas S, Briancon-Marjollet A, Bossis G, Lopez MA, Piechaczyk M, Jariel-Encontre I, Debant A, Hipskind RA (2004) SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. J Cell Biol 165:767–773

    Article  CAS  PubMed  Google Scholar 

  • Santolini E, Salcini AE, Kay BK, Yamabhai M, Di Fiore PP (1999) The EH Network. Exp Cell Res 253:186–209

    Article  CAS  PubMed  Google Scholar 

  • Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145:119–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Google Scholar 

  • Stenmark H, Aasland R, Toh BH, D’Arrigo A (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. 271:24048–24054

  • Tanaka K, Nishide J, Okazaki K, Kato H, Niwa O, Nakagawa T, Matsuda H, Kawamukai M, Murakami Y (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol 19:8660–8672

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Burg HA, Kini RK, Schuurink RC, Takken FL (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998–2016

    Article  PubMed Central  PubMed  Google Scholar 

  • van Engelen FA, Molthoff JW, Conner AJ, Nap J-P, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voigt B, Timmers AC, Samaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluska F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  CAS  PubMed  Google Scholar 

  • Wong WT, Schumacher C, Salcini AE, Romano A, Castagnino P, Pelicci PG, Di Fiore P (1995) A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc Natl Acad Sci USA 92:9530–9534

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Yang C (2013) Emerging role of SUMOylation in plant development. Plant Signal Behav 8. doi:10.4161/psb.24727

  • Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142:1548–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Israel Science Foundation administered by the Israel Academy of Science and Humanities no. 388/12 and by Research Grant Award no. 4312-10 from BARD, The United States–Israel Binational Agriculture Research and Development Fund. FYVE-dsRed was a kind gift from Dr. Jozef Samaj. We thank Drs Mia Horowitz and Olga Pekar for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Avni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2013_148_MOESM1_ESM.tif

Supplemental Figure 1 Interaction between SUMO and AtEHD2. (a) Bimolecular fluorescence complementation (BiFC) visualization of the interaction between SUMO and AtEHD2; SUMO and AtEHD2_K480Q. Fluorescence images of N. benthamiana leaves infiltrated with a mixture of Agrobacterium tumefaciens (OD600 = 0.1) containing Pro35S:YC-SUMO and Pro35S:YN-AtEHD2 or Pro35S:YC-SUMO and Pro35S:YN-AtEHD2_K480Q. Leaf sections were visualized 48 h after injection under a laser-scanning confocal microscope (Zeiss). Bars= 50 μm. (b) Interactions between AtEHD2-K480Q and SUMO in yeast. Yeast cells harboring SUMO (in pBT3-SUC), and AtEHD2-K480Q (in pPR3-N) or appropriate controls as indicated, were grown on galactose medium lacking the amino acids tryptophan, leucine, adenine and histidine containing 15 mM 3-AT and supplemented with X-gal. (TIFF 1,036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar, M., Schuster, S., Leibman, M. et al. The function of EHD2 in endocytosis and defense signaling is affected by SUMO. Plant Mol Biol 84, 509–518 (2014). https://doi.org/10.1007/s11103-013-0148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0148-7

Keywords

Navigation