Skip to main content
Log in

Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The non-specific lipid transfer proteins (nsLTP) are unique to land plants. The nsLTPs are characterized by a compact structure with a central hydrophobic cavity and can be classified to different types based on sequence similarity, intron position or spacing between the cysteine residues. The type G nsLTPs (LTPGs) have a GPI-anchor in the C-terminal region which attaches the protein to the exterior side of the plasma membrane. The function of these proteins, which are encoded by large gene families, has not been systematically investigated so far. In this study we have explored microarray data to investigate the expression pattern of the LTPGs in Arabidopsis and rice. We identified that the LTPG genes in each plant can be arranged in three expression modules with significant coexpression within the modules. According to expression patterns and module sizes, the Arabidopsis module AtI is functionally equivalent to the rice module OsI, AtII corresponds to OsII and AtIII is functionally comparable to OsIII. Starting from modules AtI, AtII and AtIII we generated extended networks with Arabidopsis genes coexpressed with the modules. Gene ontology analyses of the obtained networks suggest roles for LTPGs in the synthesis or deposition of cuticular waxes, suberin and sporopollenin. The AtI-module is primarily involved with cuticular wax, the AtII-module with suberin and the AtIII-module with sporopollenin. Further transcript analysis revealed that several transcript forms exist for several of the LTPG genes in both Arabidopsis and rice. The data suggests that the GPI-anchor attachment and localization of LTPGs may be controlled to some extent by alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  Google Scholar 

  • Ahmad SR, Lidington EA, Ohta R, Okada N, Robson MG, Davies KA, Leitges M, Harris CL, Haskard DO, Mason JC (2003) Decay-accelerating factor induction by tumour necrosis factor-alpha through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway protects murine vascular endothelial cells against complement deposition. Immunology 110:258–268

    Article  CAS  PubMed  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM (2008) The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. Mol Plant 1:58–67

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, Ruberti I, Morelli G, Chua NH (1995) Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7:1773–1785

    CAS  PubMed  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Ann Rev Plant Biol 62:437–460

    Article  CAS  Google Scholar 

  • Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Plant Sci 80:227–240

    CAS  Google Scholar 

  • Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86

    Article  PubMed  CAS  Google Scholar 

  • Buchel AS, Molenkamp R, Bol JF, Linthorst HJ (1996) The PR-1a promoter contains a number of elements that bind GT-1-like nuclear factors with different affinity. Plant Mol Biol 30:493–504

    Article  CAS  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Phys 140:176–183

    Article  CAS  Google Scholar 

  • Chan CS, Guo L, Shih MC (2001) Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol 46:131–141

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  Google Scholar 

  • Cook ME, Graham LE (1998) Structural similarities between surface layers of selected Charophycean Algae and Bryophytes and the cuticles of vascular Plants. Int J Plant Sci 159:780–787

    Article  Google Scholar 

  • De Bodt S, Proost S, Vandepoele K, Rouze P, Van de Peer Y (2009) Predicting protein–protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics 10:288

    Article  PubMed  CAS  Google Scholar 

  • de Vetten NC, Ferl RJ (1995) Characterization of a maize G-box binding factor that is induced by hypoxia. Plant J 7:589–601

    Article  PubMed  Google Scholar 

  • DeBono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Do JH, Choi DK (2008) Clustering approaches to identifying gene expression patterns from DNA microarray data. Mol Cells 25:279–288

    CAS  PubMed  Google Scholar 

  • Domany E (2003) Cluster analysis of gene expression data. J Stat Phys 110:1117–1139

    Article  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt49) from barley (Hordeum vulgare L). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • Edqvist J, Farbos I (2002) Characterization of germination-specific lipid transfer proteins from Euphorbia lagascae. Planta 215:41–50

    Article  CAS  PubMed  Google Scholar 

  • Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4:947–964

    Article  CAS  PubMed  Google Scholar 

  • Eklund DM, Edqvist J (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Elortza F, Nühse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Futschik ME, Kasabov NK (2002) Fuzzy clustering of gene expression data. In: proceedings of world congress of computational intelligence WCCI 2002, Hawaii, IEEE Press

  • Ghiran I, Klickstein LB, Nicholson-Weller A (2003) Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J Biol Chem 78:21024–21031

    Article  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  CAS  PubMed  Google Scholar 

  • Grahnert A, Friedrich M, Engeland K, Hauschildt S (2005) Analysis of mono-ADP-ribosyltransferase 4 gene expression in human monocytes: splicing pattern and potential regulatory elements. Biochim Biophys Acta 1730:173–186

    Article  CAS  PubMed  Google Scholar 

  • Grob U, Stüber K (1987) Discrimination of phytochrome dependent light inducible from non-light inducible plant genes. Prediction of a common light-responsive element (LRE) in phytochrome dependent light inducible plant genes. Nucleic Acids Res 15:9957–9973

    Article  CAS  PubMed  Google Scholar 

  • Guerbette F, Grosbois M, Jolliot-Croquin A, Kader JC, Zachowski A (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry 38:14131–14137

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hiratsuka K, Chua NH (1997) Light regulated transcription in higher plants. J Plant Res 110:131–139

    Article  CAS  Google Scholar 

  • Hu YX, Wang YX, Liu XF, Li JY (2004) Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res 14:8–15

    Article  CAS  PubMed  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Phys 133:1605–1616

    Article  CAS  Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  • Johannesson H, Wang Y, Hanson J, Engstrom P (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol 51:719–729

    Article  CAS  PubMed  Google Scholar 

  • José-Estanyol M, Gomis-Ruth FX, Puigdomenech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q, Frank BC, Ly E, Zheng L, Jia Y, Hsia AP, An K, Chou HH, Rocke D, Lee GC, Schnable PS, An G, Buell CR, Ronald PC (2008) Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS ONE 3:3337

    Article  CAS  Google Scholar 

  • Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139:411–416

    Article  CAS  PubMed  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2008) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  • Kikuchi Y, Kakeya T, Nakajima O, Sakai A, Ikeda K, Yamaguchi N, Yamazaki T, Tanamoto K, Matsuda H, Sawada J, Takatori K (2008) Hypoxia induces expression of a GPI-anchorless splice variant of the prion protein. FEBS J 275:2965–2976

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kirubakaran SI, Begum SM, Ulaganathan K, Sakthivel N (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem 46:918–927

    Article  CAS  PubMed  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Chua NH (1990) GT-1 binding site confers light responsive expression in transgenic tobacco. Science 248:471–474

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 20. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prange T (2008) The structure of defective in induced resistance protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Sci 17:1522–1530

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Phys 150:42–54

    Article  CAS  Google Scholar 

  • Lindorff-Larsen K, Winther JR (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488:145–148

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Sakamoto A, Yang P, Minami M, Fujimoto Y, Ito T, Iwabuchi M (1992) Highly conserved hexamer, octamer and nonamer motifs are positive cis-regulatory elements of the wheat histone H3 gene. FEBS Lett 300:167–170

    Article  CAS  PubMed  Google Scholar 

  • Neinhuis C, Jetter R (1995) Ultrastructure and chemistryofepicuticular wax crystals in Polytrichales sporophytes. J Bryol 18:399–406

    Google Scholar 

  • Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1996) New antifungal proteins from sugar beet (Beta vulgaris L) showing homology to non-specific lipid transfer proteins. Plant Mol Biol 31:539–552

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Medina J, Rodriguez-Franco M, Neuhaus G, Salinas J (2012) Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. J Exp Bot 63:293–304

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164

    CAS  PubMed  Google Scholar 

  • Patel BN, Dunn RJ, David S (2000) Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem 275:4305–4310

    Article  CAS  PubMed  Google Scholar 

  • Pierleoni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9:392

    Article  PubMed  CAS  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era–new interest for an old polymer. Plant Sci 180:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ren XY, Fiers MW, Stiekema WJ, Nap JP (2005) Local coexpression domains of two to four genes in the genome of Arabidopsis. Plant Physiol 138:923–934

    Article  CAS  PubMed  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  CAS  PubMed  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  CAS  PubMed  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  Google Scholar 

  • Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Lee JY, Hwang KY, Kim KK, Suh SW (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3:189–199

    Article  CAS  PubMed  Google Scholar 

  • Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    Article  CAS  PubMed  Google Scholar 

  • Sodano P, Caille A, Sy D, de Person G, Marion D, Ptak M (1997) 1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein global fold of the complex. FEBS Lett 416:130–134

    Article  CAS  PubMed  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    CAS  PubMed  Google Scholar 

  • Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Phys 105:35–45

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647–1657

    CAS  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Mas P (2012) Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana. Mol Plant 5:545–553

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Gunning W, Kelley KM, Ratnam M (2002) Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane. J Membrane Biol 189:35–43

    Article  CAS  Google Scholar 

  • Wang SY, Wu JH, Ng TB, Ye XY, Rao PF (2004) A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An electronic fluorescent pictograph browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Kim JH, Lee HY, Nam HG, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61:3947–3957

    Article  CAS  PubMed  Google Scholar 

  • Yakir E, Hilman D, Harir Y, Green RM (2007) Regulation of output from the plant circadian clock. FEBS J 274:335–345

    Article  CAS  PubMed  Google Scholar 

  • Zachowski A, Guerbette F, Grosbois M, Jolliot-Croquin A, Kader JC (1998) Characterisation of acyl binding by a plant lipid-transfer protein. Eur J Biochem 257:443–448

    Article  CAS  PubMed  Google Scholar 

  • Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610

    Article  CAS  PubMed  Google Scholar 

  • Zheng BS, Rönnberg E, Viitanen L, Salminen TA, Lundgren K, Moritz T, Edqvist J (2008) Arabidopsis sterol carrier protein-2 is required for normal development of seeds and seedlings. J Exp Bot 59:3485–3499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the assistance from Muneeswaran Jayachandra Pandiyan during the initial phase of the study. This work was supported by Carl Tryggers Stiftelse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Edqvist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 10 kb)

Supplementary material 2 (XLSX 25 kb)

Supplementary material 3 (XLSX 25 kb)

Supplementary material 4 (XLSX 25 kb)

Supplementary material 5 (XLSX 25 kb)

Supplementary material 6 (XLSX 24 kb)

Supplementary material 7 (XLSX 25 kb)

11103_2013_113_MOESM8_ESM.pdf

Fuzzy C-Means plots for datasets Whole Plant, Biotic Stress, Abiotic Stress and Hormone. The plots illustrate to which probability (from 0 to 1) each AtLTPG belongs to each of three clusters. The genes in module AtI are green, genes in module AtII are red and genes placed in AtIII are blue (PDF 77 kb)

11103_2013_113_MOESM9_ESM.pdf

The expression pattern of members in module AtI after different abiotic stresses in shoot (top) and root (bottom). Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 267 kb)

11103_2013_113_MOESM10_ESM.pdf

The expression pattern of members in module AtI after different biotic stresses. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 162 kb)

11103_2013_113_MOESM11_ESM.pdf

The expression pattern of members in module AtI after treatment with different chemicals. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 154 kb)

11103_2013_113_MOESM12_ESM.pdf

The expression pattern of members in module AtII after different abiotic stresses in shoot (top) and root (bottom). Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 328 kb)

11103_2013_113_MOESM13_ESM.pdf

The expression pattern of members in module AtII after different biotic stresses. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 104 kb)

11103_2013_113_MOESM14_ESM.pdf

The expression pattern of members in module AtII after different hormone treatments. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 163 kb)

11103_2013_113_MOESM15_ESM.pdf

The expression pattern of members in module AtIII after different abiotic stresses in shoot (top) and root (bottom). Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 380 kb)

11103_2013_113_MOESM16_ESM.pdf

The expression pattern of members in module AtIII after different biotic stresses. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 230 kb)

Supplementary material 17 (PDF 238 kb)

11103_2013_113_MOESM18_ESM.pdf

The expression pattern of members in module AtIII after different hormone treatments. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (PDF 194 kb)

11103_2013_113_MOESM19_ESM.xls

The expression pattern of members in module AtIII after treatment with different chemicals. Each graph represents the expression level of one protein. Standard deviation is shown as error bars (XLS 52 kb)

Supplementary material 20 (XLS 47 kb)

Supplementary material 21 (XLS 41 kb)

11103_2013_113_MOESM22_ESM.pdf

Control of genomic DNA contamination in the RNA samples used for investigation of alternative splicing. The control is shown for tissues and conditions where alternative splicing was found. (A) The expression of AtLTPG1 in flower during normal growth conditions. Results from the synthesized cDNA (+RT) and the negative control (-RT) is shown. (B) The expression of AtLTPG1 in leaf during constant light. Only the negative control (-RT) is shown. (C) The expression of AtLTPG8 in leaf during normal growth conditions. Only the negative control (-RT) is shown. (D) The expression of AtLTPG8 in flower during constant light. Results from the synthesized cDNA (+RT) and the negative control (-RT) is shown. (E) The expression of AtLTPG11 in leaf during constant light. Only the negative control (-RT) is shown. (F) The expression of AtLTPG29 in flower during normal growth conditions. Results from the synthesized cDNA (+RT) and the negative control (-RT) is shown. (G) The expression of AtLTPG29 in silique during constant light. Only the negative control (-RT) is shown. (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edstam, M.M., Blomqvist, K., Eklöf, A. et al. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. Plant Mol Biol 83, 625–649 (2013). https://doi.org/10.1007/s11103-013-0113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0113-5

Keywords

Navigation