Skip to main content
Log in

Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Pollen acts as a biological protector for protecting male sperm from various harsh conditions and is covered by an outer cell wall polymer called the exine, a major constituent of which is sporopollenin. The tapetum is in direct contact with the developing gametophytes and plays an essential role in pollen wall and pollen coat formation. The precise molecular mechanisms underlying tapetal development remain highly elusive, but molecular genetic studies have identified a number of genes that control the formation, differentiation, and programmed cell death of tapetum and interactions of genes in tapetal development. Herein, several lines of evidence suggest that sporopollenin is built up via catalytic enzyme reactions in the tapetum. Furthermore, as based on genetic evidence, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    PubMed  CAS  Google Scholar 

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  PubMed  CAS  Google Scholar 

  • Ahlers F, Bubert H, Steuernagel S, Wiermann R (2000) The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Z Naturforsch C. J Biosci 55:129–136

    CAS  Google Scholar 

  • Ahlers F, Lambert J, Wiermann R (2003) Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia L. Z Naturforsch C. J Biosci 58:807–811

    CAS  Google Scholar 

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidops thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:11–124

    Article  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  PubMed  CAS  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Schneitz K (2000) NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127:4227–4238

    PubMed  CAS  Google Scholar 

  • Balasubramanian S, Schneitz K (2002) NOZZLE links proximal–distal and adaxial–abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129:4291–4300

    PubMed  CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  PubMed  CAS  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  PubMed  CAS  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  PubMed  CAS  Google Scholar 

  • Chen WW, Yu XH, Zhang KS, Shi JX, Oliveira SD, Schreiber L, Shanklin J, Zhang DB (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    Article  PubMed  CAS  Google Scholar 

  • Chevalier D, Batoux M, Fulton L, Pfister K, Yadav RK, Schellenberg M, Schneitz K (2005) STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc Natl Acad Sci USA 102:9074–9079

    Article  PubMed  CAS  Google Scholar 

  • Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007) Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19:3876–3888

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2010) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65:181–193

    Article  PubMed  Google Scholar 

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  PubMed  CAS  Google Scholar 

  • de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525

    Article  PubMed  Google Scholar 

  • DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16

    Article  PubMed  CAS  Google Scholar 

  • Doan TT, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P (2009) Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J Plant Physiol 166:787–796

    Article  PubMed  CAS  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  PubMed  CAS  Google Scholar 

  • Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955

    Article  PubMed  CAS  Google Scholar 

  • Dou XY, Yang KZ, Zhang Y, Wang W, Liu XL, Chen LQ, Zhang XQ, Ye D (2011) WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. J Integr Plant Biol 53:74–88

    Article  PubMed  CAS  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(suppl):S84–S97

    PubMed  CAS  Google Scholar 

  • Fletcher JC (2002) Shoot and floral meristem maintenance in Arabidopsis. Annu Rev Plant Biol 53:45–66

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138:611–623

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    PubMed  CAS  Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, de Azevedo Souza C, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  PubMed  CAS  Google Scholar 

  • Guilford WJ, Schneider DM, Labovitz J, Opella SJ (1988) High resolution solid state CNMR spectroscopy of sporopollenins from different plant taxa. Plant Physiol 86:134–136

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237

    Article  PubMed  CAS  Google Scholar 

  • Higginson T, Li SF, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192

    Article  PubMed  CAS  Google Scholar 

  • Hord CL, Chen C, Deyoung BJ, Clark SE, Ma H (2006) The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18:1667–1680

    Article  PubMed  CAS  Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  PubMed  CAS  Google Scholar 

  • Jia G, Liu X, Owen HA, Zhao D (2008) Signalling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci USA 105:2220–2225

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153

    Article  PubMed  Google Scholar 

  • Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, de Azevedo Souza C, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh DY, Legrand M, Douglas CJ (2010) LAP6/POLYK ETIDE SYN THASE A and LAP5/POLYK ETIDE SYNTHASE B encode hydroxyalkyla-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045–4066

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol 54:403–430

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  PubMed  CAS  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, Liang WQ, Zhang DB (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D (2009) The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol 151:1401–1411

    Article  PubMed  CAS  Google Scholar 

  • Luo B, Xue XY, Hu WL, Wang LJ, Chen XY (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802

    Article  PubMed  CAS  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50:751–766

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi Y, Shimokawa Y, Wanibuchi K, Noguchi H, Abe I (2008) Structure function analysis of novel type III polyketide synthases from Arabidopsis thaliana. Biol Pharm Bull 31:2205–2210

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Jorgensen K, Schaller H, Pinot F, Moller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  PubMed  CAS  Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185

    Article  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Phan AH, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–2224

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Pighin JA, Zheng HQ, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  PubMed  CAS  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  PubMed  CAS  Google Scholar 

  • Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-binding cassette transporter G26 is required formale fertility and pollen exine formation in Arabidopsis. Plant Physiol 154:678–690

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  PubMed  CAS  Google Scholar 

  • Rowland O, Lee R, Franke R, Schreiber L, Kunst L (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544

    Article  PubMed  CAS  Google Scholar 

  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM (2011) Land plants acquired active stomatal control early in their evolutionary history. Curr Biol 21:1030–1035

    Article  PubMed  CAS  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:11664–11669

    Article  PubMed  CAS  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  PubMed  CAS  Google Scholar 

  • Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Shivanna KR, Cresti M, Ciampolini F (1997) Pollen development and pollen–pistil interaction. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 15–39

    Chapter  Google Scholar 

  • Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293

    Article  PubMed  CAS  Google Scholar 

  • Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Masaoka K, Nishi M, Nakamura K, Ishiguro S (2008) Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana. Plant Cell Physiol 49:1465–1477

    Article  PubMed  CAS  Google Scholar 

  • Tang LK, Chu H, Yip WK, Yeung EC, Lo C (2009) An anther-specific dihydroflavonol 4-reductase-like gene (DRL1) is essential for male fertility in Arabidopsis. New Phytol 181:576–587

    Article  PubMed  CAS  Google Scholar 

  • Thorstensen T, Grini PE, Mercy I, Alm V, Erdal S, Aasland R, Aalen RB (2008) The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). Plant Mol Biol 66:47–59

    Article  PubMed  CAS  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  PubMed  CAS  Google Scholar 

  • Wallace S, Fleming A, Wellman CH, Beerling DJ (2011) Evolutionary development of the plant spore and pollen wall. AoB PLANTS 2011 plr027. doi:10.1093/aobpla/plr027

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    Article  PubMed  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cyto-chromes P450. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0009, http://www.aspb.org/publications/arabidopsis/

  • Wijeratne AJ, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer DG, Zhao D, Ma H (2007) Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J 52:14–29

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    Article  PubMed  CAS  Google Scholar 

  • Wu SS, Platt KA, Ratnayake C, Wang TW, Ting JT, Huang AH (1997) Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc Natl Acad Sci USA 94:12711–12716

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  PubMed  CAS  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Pauh CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT 1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Jiang L, Puah CS, Xie LF, Zhang XQ, Chen LQ, Yang WC, Ye D (2005) Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS cells. Plant Physiol 139:186–191

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcript ion factor. Development 133:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  PubMed  CAS  Google Scholar 

  • Zhang DS, Liang W, Yin C, Zong J, Gu F, Zhang D (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154:149–162

    Article  PubMed  CAS  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Gene Dev 16:2021–2031

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Herve P, Xue Q, Bennett J (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54:375–387

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xing-Wang Deng for useful advice. We also thank anonymous reviewers and the journal editor for their critical comments on the manuscript. We apologize to colleagues for not being able to cite all relevant and earlier papers because of space limitations and the focus of the article on recent research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Fan, Xd. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis . Plant Mol Biol 83, 165–175 (2013). https://doi.org/10.1007/s11103-013-0085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0085-5

Keywords

Navigation