Skip to main content

Advertisement

Log in

Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang L, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A (2008) Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol 8:93

  • Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie ZX, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM (2011) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143

    Google Scholar 

  • Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848

    Article  PubMed  CAS  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, dePamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Barozai MYK, Irfan M, Yousaf R, Ali I, Qaisar U, Maqbool A, Zahoor M, Rashid B, Hussnain T, Riazuddin S (2008) Identification of micro-RNAs in cotton. Plant Physiol Biochem 46:739–751

    Article  Google Scholar 

  • Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609–1614

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Nat Acad Sci USA 104:12157–12162

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA, Rodriguez MC, Distefano AJ, Hopp HE, del Vas M, Asurmendi S (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152

    Google Scholar 

  • Beasley JO (1941) Hybridization, cytology, and polyploidy of Gossypium. Chron Bot 6:394–395

    Google Scholar 

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615–1621

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (Virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Jr., Kovalchuk I (2010) Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins. Plos One 3;5(3):e9514

    Google Scholar 

  • Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  PubMed  CAS  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Google Scholar 

  • Cauquil J (1977) Studies on a cotton plant disease of viral origin—blue disease. Coton et Fibres Tropicales 32:259

    Google Scholar 

  • Chan SWL, Zilberman D, Xie ZX, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336

    Article  PubMed  CAS  Google Scholar 

  • Chan SWL, Henderson IR, Zhang X, Shah G, Chien JSC, Jacobsen SE (2006a) RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet 2:791–797

    CAS  Google Scholar 

  • Chan SWL, Zhang X, Bernatavichute YV, Jacobsen SE (2006b) Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4:1923–1933

    CAS  Google Scholar 

  • Chen XM (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Nat Acad Sci USA 107:15269–15274

    Article  PubMed  CAS  Google Scholar 

  • Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma ZR, Frank W, Axtell MJ (2008) Physcomitrella patens DCL3 Is Required for 22-24 nt siRNA Accumulation, Suppression of Retrotransposon-Derived Transcripts, and Normal Development. Plos Genetics 4(12):e1000314

    Google Scholar 

  • Correa RL, Silva TF, Simoes-Araujo JL, Barroso PAV, Vidal MS, Vaslin MFS (2005) Molecular characterization of a virus from the family Luteoviridae associated with cotton blue disease. Arch Virol 150:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  • Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  PubMed  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. Plos One 14;2(2):e219

    Google Scholar 

  • Feng JL, Liu X, Lai LY, Chen JS (2009) Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Acta Biochim Biophys Sin 43:258–266

    Article  Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Fusaro AF, Correa RL, Nakasugi K, Jackson C, Kawchuk L, Vaslin MF, Waterhouse PM (2012) The enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 426:178–187

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Nat Acad Sci USA 106:17835–17840

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Nat Acad Sci USA 106:17811–17816

    Article  PubMed  CAS  Google Scholar 

  • He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Hollunder J, Niehl A, Korner CJ, Gereige D, Windels D, Arnold A, Kuiper M, Vazquez F, Pooggin M, Heinlein M (2011) Specific Impact of Tobamovirus Infection on the Arabidopsis Small RNA Profile. Plos One 6(5):e19549

    Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  PubMed  CAS  Google Scholar 

  • Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V, Renou JP, Voinnet O (2011) Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. Plos Pathogens 7(5):e1002035

    Google Scholar 

  • Johns MA, Mottinger J, Freeling M (1985) A low copy number, copia-like transposon in maize. EMBO J 4:1093–1101

    PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie ZX, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:479–493

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Jin HL (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  PubMed  CAS  Google Scholar 

  • Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, Jansson S (2009) Genome-wide profiling of Populus small RNAs. BMC Genomics 20;10:620

    Google Scholar 

  • Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 29;10:457

    Google Scholar 

  • Lang Q, Jin C, Lai L, Feng J, Chen S, Chen J (2011) Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep 38:1523–1531

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang J-W, Raetsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Nat Acad Sci USA 107:17466–17473

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  • Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y-H, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  PubMed  CAS  Google Scholar 

  • Mayo MA, ZieglerGraff V (1996) Molecular biology of luteoviruses. Adv Virus Res 46:413–460

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li DW, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  PubMed  CAS  Google Scholar 

  • Mottinger JP, Johns MA, Freeling M (1984) Mutations of the ADH1 gene in maize following infection with Barley stripe mosaic-virus. Mol Gen Genet 195:367–369

    Article  PubMed  CAS  Google Scholar 

  • Naqvi AR, Haq QMR, Mukherjee SK (2010) MicroRNA profiling of Tomato leaf curl new delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281

    Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  PubMed  CAS  Google Scholar 

  • Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10(11):R122

    Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal 62:960–976

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Dunoyer P, Heim F, Richards KE, Jonard G, Ziegler-Graff V (2002) P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824

    Article  PubMed  CAS  Google Scholar 

  • Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Ruan M-B, Zhao Y-T, Meng Z-H, Wang X-J, Yang W-C (2009) Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94:263–268

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  PubMed  CAS  Google Scholar 

  • Ruiz–Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, Di Serio F, Flores R (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619

    Article  PubMed  Google Scholar 

  • Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290

    Article  Google Scholar 

  • Silva TF, Correa RL, Castilho Y, Silvie P, Belot JL, Vaslin MFS (2008) Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease. Virol J 5:123

    Google Scholar 

  • Silva TF, Romanel EAC, Andrade RRS, Farinelli L, Osteras M, Deluen C, Correa RL, Schrago CEG, Vaslin MFS (2011) Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mole Biol 12:40

    Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    Article  PubMed  CAS  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H, Lee T-J, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895

    Article  PubMed  CAS  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11(22):4673–4680

    Google Scholar 

  • Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana. Plos Genetics 6(7):e1001031

    Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of Small RNAs. In: KovaIchuk I, Zemp F (eds) Plant epigenetics: methods and protocols, methods in molecular biology vol 631. pp 109–122

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629

    Article  CAS  Google Scholar 

  • Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11:464–470

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant MicroRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Google Scholar 

  • Zhang ZH, Yu JY, Li DF, Zhang ZY, Liu FX, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian sponsoring agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, 150639/2010-4-PDJ) for financial support to CEGS and a postdoctoral fellowship to ER, FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for financial support to MFSV through APQ1 E26/110.264/2010 and Pensa Rio E-26/110.324/2010, and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the studentship to TFS. This work is part of the PhD thesis written by TFS for the Programa de Biotecnologia Vegetal from Universidade Federal do Rio de Janeiro, Brazil. We also thank Magne Osteras, Cécile Deluen, Christelle Barras, Elisabeth Dieterle and Patricia O. Hernandez from Fasteris Co. for technical assistance with deep sequencing and Tereza Galvão Carvalho from UFRJ for helping with plant care and RNA extractions. We thank Dr. Rogério Margis from UFRGS for exciting and helpful discussions and Dr. Marie-Anne and her students at USP for stimulating discussions and help with the bioinformatics programs used to study TEs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite F. S. Vaslin.

Additional information

Elisson Romanel and Tatiane F. Silva contributed equally to the production of the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2012_9959_MOESM1_ESM.ppt

Figure S1: The percentage of 5′ nt identities of Gossypium hirsutum small RNA (sRNA) in uninfected (UIL) and infected (IL) libraries. The percentage of 5’ nt identities among the 18-26 nt sRNA classes from the unique (A and B) and redundant (C and D) data are shown. sRNAs sequences (reads) beginning with A (red), C (orange), G (yellow), and U (green) are indicated for each size class. A and C – The data from the uninfected library. B and D – The data from the infected library. (PPT 162 kb)

11103_2012_9959_MOESM2_ESM.ppt

Figure S2: Predicted stem-loop hairpin secondary structures of four new miRNAs identified in conserved cotton miRNAs families. Stem-loop structures of the novel conserved miRNAs Ghr-miR172f (A) and Ghr-miR319a (B) deduced from the Gossypium raimondii genome. Stem-loop structures of the novel conserved miRNAs Ghr-miR393c (C) and Ghr-miR3476a (D) deduced from G. hirsutum ESTs. The red lines indicate the position of the mature miRNA sequences. The pre-miRNA sequences used for Ghr-miR172, Ghr-miR319, Ghr-miR393 and Ghr-miR3476 were gnl|ti|2101390498 FITC127369.g1, gnl|ti|2102160818 FONU88474.g1, TA29056_3635 and DW497660, respectively. (PPT 223 kb)

11103_2012_9959_MOESM3_ESM.ppt

Figure S3: Effects of CLRDV infection on cotton 20, 22 and 24-nt miRNA expression. Comparative analysis of the cotton 20, 22 and 24-nt miRNAs families identified in the uninfected (UIL) and CLRDV-infected (IL) deep-sequencing libraries. Histograms represent the percentage of miRNA families. Only miRNA families with more than four reads in at least one library and containing reads in both libraries were analyzed. (PPT 276 kb)

11103_2012_9959_MOESM4_ESM.ppt

Figure S4: Determining specificity of RT-qPCR TE-specific primers. Melting curves of the retrotransposons from Gossypium hirsutum Gypsy 2, Copia 1 and Copia 2 showing the amplification of a single product and Gypsy 1 showing multiple products after RT-qPCR analysis using SYBRGreen. (PPT 1080 kb)

Supplementary material 5 (DOC 35 kb)

Supplementary material 6 (DOC 220 kb)

Supplementary material 7 (XLS 208 kb)

Supplementary material 8 (DOC 56 kb)

Supplementary material 9 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanel, E., Silva, T.F., Corrêa, R.L. et al. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection. Plant Mol Biol 80, 443–460 (2012). https://doi.org/10.1007/s11103-012-9959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9959-1

Keywords

Navigation