Skip to main content
Log in

A strategy for building an amplified transcriptional switch to detect bacterial contamination of plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have designed and tested a transcriptional autofeedback loop that could be used to engineer plants to sense the presence of bacteria. The signal amplification circuit was built based on the biological switch responsive to the presence of bacterial flagellin. Several flagellin- and E. coli-inducible Arabidopsis promoters were cloned and tested in transient expression assays in Arabidopsis and lettuce protoplasts using a flagellin-based peptide. These were investigated either as direct drivers of a reporter gene, or as a component of a transcriptional autofeedback loop. Arabidopsis promoters from the xyloglucan endotransglucosylase/hydrolase 18 (ATXTH18) and cytochrome P450 family CYP82C3 monooxygenase worked well as biological switches. These promoters were incorporated into our feedback loop system for signal amplification. The inclusion of a transcriptional repressor reduced basal expression, thereby increasing fold-amplification of signal detection and fine-tuning the positive autofeedback loop regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, Amariglio N, Vaisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, Yarden Y (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512

    Article  PubMed  CAS  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Babcock D (2010) E. coli in lettuce—a study of Yuma lettuce production, 2006. http://www.foodpoisonjournal.com/food-poisoning-information/e-coli-in-lettuce-a-study-of-yuma-lettuce-production-2006/

  • Beattie GA, Lindow SE (1994) Epiphytic fitness of phytopathogenic bacteria: physiological adaptations for growth and survival. Curr Top Microbiol Immunol 192:1–27

    PubMed  CAS  Google Scholar 

  • Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bender CL, Kunkel BN (2004) Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv tomato DC3000. Mol Plant Microbe Interact 17:162–174

    Article  PubMed  CAS  Google Scholar 

  • Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137:172–181

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Pysiol 129:706–716

    Article  CAS  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  PubMed  CAS  Google Scholar 

  • Corton JC, Moreno E, Johnston SA (1998) Alterations in the Gal4 DNA-binding domain can affect transcriptional activation independent of DNA binding. J Biol Chem 273:13776–13780

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E, Yuan C-X, Scharf K-D, Englich G, Gurley WB (2000) Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol Biol 43:459–471

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56:57–75

    Article  PubMed  CAS  Google Scholar 

  • Endler L, Rodriguez N, Juty N, Chelliah V, Laibe C, Li C, Novere NL (2009) Designing and encoding models for synthetic biology. J R Soc Interf 6:S405–S417. doi:10.1098/rsif.2009.0035.focus

    Article  Google Scholar 

  • Euglem T, Somssich IE (2007) Network of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  Google Scholar 

  • Euglem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  Google Scholar 

  • Falkenstein D (2010) As lettuce outbreaks continue, HUS parents must ask, were warnings ignored? http://www.foodpoisonjournal.com/foodborne-illness-outbreaks/as-lettuce-outbreaks-continue-hus-parents-must-ask-were-warnings-ignored/

  • Glowacki S, Macioszek VK, Kononowicz AK (2010) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24

    Article  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hitti M (2008) Salmonella tomato warning expanded. http://www.webmd.com/food-recipes/food-poisoning/news/20080610/salmonella-tomato-warning-expanded.

  • Imhof MO, Chatellard P, Mermod N (2000) A regulatory network for the efficient control of transgene expression. J Gene Med 2:107–116

    Article  PubMed  CAS  Google Scholar 

  • King AD, Magnuson JA, Torok T, Goodman N (1991) Microbial flora and storage quality of partially processed lettuce. J Food Sci 56:459–461

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Maki DG (2006) Don’t eat the spinach-controlling foodborne infectious disease. N Engl J Med 355:1952–1955

    Article  PubMed  CAS  Google Scholar 

  • Marucci L, Barton DAW, Cantone I, Ricci MA, Cosma MP, Santini S, di Bernardo D, di Bernardo M (2009) How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch. PLoS ONE. http://www.plosone.org

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  PubMed  CAS  Google Scholar 

  • Mittal S, Davis KR (1995) Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • NASCARRAYS-122, Brunner F, Nurnberger T (2004) Experiment: AtGeneExpress: response to bacterial-(LPS, HrpZ, Flg22) and oomycete-(NPP1) derived elicitors. http://affymetrix.arabidopsis.info/narrays/experimentpage.pl?experimentid=122

  • NYTimes (2006) E. coli worry spreads to lettuce; California grower issues recall. http://www.nytimes.com/2006/10/09/us/09lettuce.html

  • O’Brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627

    Article  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Pysiol 150:1648–1655

    Article  CAS  Google Scholar 

  • Panstruga R, Parker JE, Schulze-Lefert P (2009) SnapShot: plant immune response pathways. Cell 136:978

    Article  PubMed  CAS  Google Scholar 

  • Pomerening JR, Kim SY, Ferrell JE (2005) Systems-level dissection of the cell cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122:565–578

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant scenescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok BS IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Huffaker A, Yamagucchi Y (2007) New insights into innate immunity in Arabidopsis. Cell Microbiol 9:1902–1908

    Article  PubMed  CAS  Google Scholar 

  • Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer C, Corke FMK, Smith CH, Bevan M (2000) Transactivation of a target gene through feedforward loop activation in plants. Funct Integr Genom 1:35–43

    Article  CAS  Google Scholar 

  • Sheen J (1993) Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J 12:3497–3505

    PubMed  CAS  Google Scholar 

  • Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplast. http://genetics.mgh.harvard.edu/sheenweb/protocols_reg.html

  • Shen QH, Schulze-Lefert P (2007) Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J 26:4293–4301

    Article  PubMed  CAS  Google Scholar 

  • Takai R, Kaneda T, Isogai A, Takayama S, Che F-S (2007) A new method of defense response analysis using a transient expression system in rice protoplasts. Biosci Biotechnol Biochem 71:590–593

    Article  PubMed  CAS  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F-S (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 21:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53

    Article  PubMed  CAS  Google Scholar 

  • Tian X-J, Zhang X-P, Liu F, Wang W (2009) Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys Rev 80:0011926-0011921–0011926-0011928

    Google Scholar 

  • Weise E (2008) Salmonella outbreak linked to raw tomatoes strikes about 150. http://www.usatoday.com/cleanprint/?1297712859185

  • Zhou W, Edelman GM, Mauro VP (2005) A positive feedback vector for identification of nucleotide sequences that enhance translation. Proc Natl Acad Sci USA 102(18):6273–6278

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christopher Defraia for Arabidopsis growth protocols and Donna Williams for help with the confocal microscope. This project was funded by grant W911SR-07-C-0084 to WBG and EC from the Florida Biodefense Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eva Czarnecka or William B. Gurley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnecka, E., Verner, F.L. & Gurley, W.B. A strategy for building an amplified transcriptional switch to detect bacterial contamination of plants. Plant Mol Biol 78, 59–75 (2012). https://doi.org/10.1007/s11103-011-9845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9845-2

Keywords

Navigation