Skip to main content
Log in

Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Expression of the chloroplast electron shuttle ferredoxin is induced by light through mechanisms that partially depend on sequences lying in the coding region of the gene, complicating its manipulation by promoter engineering. Ferredoxin expression is also down-regulated under virtually all stress situations, and it is unclear if light-dependent induction and stress-dependent repression proceed through the same or similar mechanisms. Previous reports have shown that expression of a cyanobacterial flavodoxin in tobacco plastids results in plants with enhanced tolerance to adverse environmental conditions such as drought, chilling and xenobiotics (Tognetti et al. in Plant Cell 18:2035–2050, 2006). The protective effect of flavodoxin was linked to functional replacement of ferredoxin, suggesting the possibility that tolerant phenotypes might be obtained by simply increasing ferredoxin contents. To bypass endogenous regulatory constraints, we transformed tobacco plants with a ferredoxin gene from Anabaena sp. PCC7120, which has only 53% identity with plant orthologs. The cyanobacterial protein was able to interact in vitro with ferredoxin-dependent plant enzymes and to mediate NADP+ photoreduction by tobacco thylakoids. Expression of Anabaena ferredoxin was constitutive and light-independent. However, homozygous lines accumulating threefold higher ferredoxin levels than the wild-type failed to show enhanced tolerance to oxidative stress and chilling temperatures. Under these adverse conditions, Anabaena ferredoxin was down-regulated even faster than the endogenous counterparts. The results indicate that: (1) light- and stress-dependent regulations of ferredoxin expression proceed through different pathways, and (2) overexpression of ferredoxin is not an alternative to flavodoxin expression for the development of increased stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam J, Whitaker RA, Krogmann DW, Curtis SE (1986) Isolation and sequence of the gene for ferredoxin I from the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 168:1265–1271

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N (2011) Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants. Plant J 65:922–935

    Article  PubMed  CAS  Google Scholar 

  • Böhme H, Schrautemeier B (1986) Comparative characterization of ferredoxins from heterocysts and vegetative cells of Anabaena variabilis. Biochim Biophys Acta 891:1–7

    Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Arnon DI (1971) Ferredoxin from photosynthetic bacteria, algae, and higher plants. Methods Enzymol 23:413–440

    Article  Google Scholar 

  • Carrillo N, Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270:1900–1915

    Article  PubMed  CAS  Google Scholar 

  • Dickey LF, Gallo-Meagher M, Thompson WF (1992) Light regulatory sequences are located within the 5’ portion of the Fed-1 message sequence. EMBO J 11:2311–2317

    PubMed  CAS  Google Scholar 

  • Dickey LF, Nguyen TT, Allen GC, Thompson WF (1994) Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell 6:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Elliott RC, Dickey LF, White MJ, Thompson WF (1989) Cis-acting elements for light regulation of pea ferredoxin I gene expression are located within transcribed sequences. Plant Cell 1:691–698

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Kuhlmann M, Pecinka A, Schmidt R, Mette MF (2008) Local DNA features affect RNA directed transcriptional gene silencing and DNA methylation. Plant J 53:1–10

    Article  PubMed  CAS  Google Scholar 

  • Gallois P, Marinho P (1995) Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol Biol 49:39–48

    PubMed  CAS  Google Scholar 

  • Gallo-Meagher M, Sowinski DA, Elliott RC, Thompson WF (1992) Both internal and external regulatory elements control expression of the pea fed-1 gene in transgenic tobacco seedlings. Plant Cell 4:389–395

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hanke GT, Hase T (2008) Variable photosynthetic roles of two leaf-type ferredoxins in Arabidopsis, as revealed by RNA interference. Photochem Photobiol 84:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T (2004) A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol 134:255–264

    Article  PubMed  CAS  Google Scholar 

  • Hase T, Schürmann P, Knaff D (2006) The interaction of ferredoxin with ferredoxin-dependent enzymes. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24. Springer, Dordrecht, pp 477–498

    Google Scholar 

  • Holtgrefe S, Bader KP, Horton P, Scheibe R, von Schaewen A, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Hurley JK, Salamon Z, Meyer TE, Fitch JC, Cusanovich MA, Markley JL, Cheng H, Xia B, Chae YK, Medina M, Gómez-Moreno C, Tollin G (1993) Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: site-directed mutagenesis and laser flash photolysis. Biochemistry 32:9346–9354

    Article  PubMed  CAS  Google Scholar 

  • Kimata-Ariga Y, Matsumura T, Kada S, Fujimoto H, Fujita Y, Endo T, Mano J, Sato F, Hase T (2000) Differential electron flow around photosystem I by two C(4)-photosynthetic-cell-specific ferredoxins. EMBO J 19:5041–5050

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids–pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Mazouni K, Domain F, Chauvat F, Cassier-Chauvat C (2003) Expression and regulation of the crucial plant-like ferredoxin of cyanobacteria. Mol Microbiol 49:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Medina M (2009) Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. FEBS J 276:3942–3958

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549

    CAS  Google Scholar 

  • Navarro JA, Hervás M, Genzor CG, Cheddar G, Fillat MF, de la Rosa MA, Gómez-Moreno C, Cheng H, Xia B, Chae YK, Yan H, Wong B, Straus NA, Markley JL, Hurley JK, Tollin G (1995) Site-specific mutagenesis demonstrates that the structural requirements for efficient electron transfer in Anabaena ferredoxin and flavodoxin are highly dependent on the reaction partner: kinetic studies with photosystem I, ferredoxin:NADP+ reductase, and cytochrome c. Arch Biochem Biophys 321:229–238

    Article  PubMed  CAS  Google Scholar 

  • Petracek ME, Dickey LF, Nguyen TT, Gatz C, Sowinski DA, Allen GC, Thompson WF (1998) Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc Natl Acad Sci USA 95:9009–9013

    Article  PubMed  CAS  Google Scholar 

  • Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res 14:5857–5868

    Article  PubMed  CAS  Google Scholar 

  • Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63:855–864

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  PubMed  CAS  Google Scholar 

  • Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  PubMed  Google Scholar 

  • Shin M (1971) Ferredoxin-NADP+ reductase from spinach. Methods Enzymol 23:440–447

    Article  Google Scholar 

  • Singh AK, Li H, Sherman LA (2004) Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. Physiol Plant 120:27–35

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei MR, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Zurbriggen MD, Morandi EN, Fillat MF, Valle EM, Hajirezaei MR, Carrillo N (2007) Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc Natl Acad Sci USA 104:11495–11500

    Article  PubMed  CAS  Google Scholar 

  • Vorst O, van Dam F, Weisbeek P, Smeekens S (1993) Light-regulated expression of the Arabidopsis thaliana ferredoxin A gene involves both transcriptional and post-transcriptional processes. Plant J 3:793–803

    Article  PubMed  CAS  Google Scholar 

  • Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R (2008) Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol Plant 133:584–598

    Article  PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Molec Biol 58:85–201

    Article  Google Scholar 

  • Wu W, Berkowitz GA (1991) Lidocaine and ATPase inhibitor interaction with the chloroplast envelope. Plant Physiol 97:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Makino A, Tomizawa K, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47:1355–1371

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen MD, Tognetti VB, Carrillo N (2007) Stress-inducible flavodoxin from photosynthetic microorganisms. The mystery of flavodoxin loss from the plant genome. IUBMB Life 59:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen MD, Tognetti VB, Fillat MF, Hajirezaei MR, Valle EM, Carrillo N (2008) Combating stress with flavodoxin: a promising route for crop improvement. Trends Biotechnol 26:531–537

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by PICT 2007-00631 from ANPCyT, Argentina. NC is a staff member and RDC and NB are fellows from CONICET, Argentina. We thank H. Poli (IBR, CONICET, Argentina) for his help with plant cultures, Dr M. Giró (IBR, CONICET, Argentina) for her assistance during activity determinations and Dr J. Chojecki (Plant Bioscience Limited, United Kingdom) for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor Carrillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2011_9786_MOESM1_ESM.tif

Supplementary Fig. 1 Nucleotide sequence alignment of Anabaena and plant Fds. Sequences coding the vegetative Fd from Anabaena sp. PCC7120, and the mature regions of FdI from tobacco (GI 45357073) and pea (GI 169086) are displayed. Identical positions are shaded in grey (TIFF 442 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccoli, R.D., Blanco, N.E., Medina, M. et al. Stress response of transgenic tobacco plants expressing a cyanobacterial ferredoxin in chloroplasts. Plant Mol Biol 76, 535–544 (2011). https://doi.org/10.1007/s11103-011-9786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9786-9

Keywords

Navigation