Skip to main content
Log in

FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arabidopsis accessions are either winter-annuals, which require cold winter temperatures for spring flowering, or rapid-cycling summer annuals. Typically, winter annual accessions have functional FRIGIDA (FRI) and FRIGIDA-LIKE 1 (FRL1) proteins that promote high expression of FLOWERING LOCUS C (FLC), which prevents flowering until after winter. In contrast, many rapid-cycling accessions have low FLC levels because FRI is inactive. Using biochemical, functional and bioinformatic approaches, we show that FRI and FRL1 contain a stable, central domain that is conserved across the FRI superfamily. This core domain is monomeric in solution and primarily α-helical. We analysed the ability of several FRI deletion constructs to function in Arabidopsis plants. Our findings suggest that the C-terminus, which is predicted to be disordered, is required for FRI to promote FLC expression and may mediate protein:protein interactions. The contribution of the FRI N-terminus appears to be limited, as constructs missing these residues retained significant activity when expressed at high levels. The important N- and C-terminal regions differ between members of the FRI superfamily and sequence analysis identified five FRI families with distinct expression patterns in Arabidopsis, suggesting the families have separate biological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Hyun Y, Kang M-J, In Yun H, Yun J-Y, Lister C, Dean C, Amasino RM, Noh B, Noh Y-S, Choi Y (2009) Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. Plant J 57:918–931

    Article  CAS  PubMed  Google Scholar 

  • Cohen SL, Ferre-D’Amare AR, Burley SK, Chait BT (1995) Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci 4:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Cooke C, Alwine JC (1996) The cap and the 3’ splice site similarly affect polyadenylation efficiency. Mol Cell Biol 16:2579–2584

    CAS  PubMed  Google Scholar 

  • De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105:16831–16836

    Article  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  • Flaherty SM, Fortes P, Izaurralde E, Mattaj IW, Gilmartin GM (1997) Participation of the nuclear cap binding complex in pre-mRNA 3’ processing. Proc Natl Acad Sci USA 94:11893–11898

    Article  CAS  PubMed  Google Scholar 

  • Furuichi Y, LaFiandra A, Shatkin AJ (1977) 5′-Terminal structure and mRNA stability. Nature 266:235–239

    Article  CAS  PubMed  Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Geraldo N, Bäurle I, Kidou S, Hu X, Dean C (2009) FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol 150:1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  • Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  CAS  PubMed  Google Scholar 

  • Hamm J, Mattaj IW (1990) Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63:109–118

    Article  CAS  PubMed  Google Scholar 

  • He Y, Doyle MR, Amasino RM (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18:2774–2784

    Article  CAS  PubMed  Google Scholar 

  • Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltrán JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  CAS  PubMed  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14:128–136

    Article  CAS  PubMed  Google Scholar 

  • Izaurralde E, Stepinski J, Darzynkiewicz E, Mattaj IW (1992) A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs. J Cell Biol 118:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Gu X, He Y (2009) Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21:1733–1746

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Kierzkowski D, Kmieciak M, Piontek P, Wojtaszek P, Szweykowska-Kulinska Z, Jarmolowski A (2009) The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. Plant J 59:814–825

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Michaels SD (2006) SUPPRESSOR OF FRIGIDA4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development 133:4699–4707

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi K, Park C, Hwang HJ, Lee I (2006) SUPPRESSOR OF FRIGIDA4, encoding a C2H2-type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18:2985–2998

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yang J-Y, Xu J, Jang I-C, Prigge MJ, Chua N-H (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49:1634–1644

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  PubMed  Google Scholar 

  • Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Rätsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8795–8800

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Izaurralde E, Jarmolowski A, McGuigan C, Mattaj IW (1996) A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev 10:1683–1698

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37:D205–D210

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Report 22:63–70

    Article  CAS  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, He Y, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100:10102–10107

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Bezerra IC, Amasino RM (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc Natl Acad Sci USA 101:3281–3285

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4:e1000077

    Article  PubMed  CAS  Google Scholar 

  • Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989–2000

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A (2010) Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 38:265–278

    Article  CAS  PubMed  Google Scholar 

  • Schlappi MR (2006) FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1. Plant Physiol 142:1728–1738

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Hong L, Michaels S, Amasino RM (2005) FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development 132:5471–5478

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Finnegan EJ, Peacock WJ, Dennis ES (2009) Mechanisms of gene repression by vernalization in Arabidopsis. Plant J 59:488–498

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C, Baxter CaN C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–803

    Article  CAS  PubMed  Google Scholar 

  • Tamada Y, Yun J-Y, Woo S, Amasino R (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  CAS  PubMed  Google Scholar 

  • van Stokkum IH, Spoelder HJ, Bloemendal M, van Grondelle R, Groen FC (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110–118

    Article  PubMed  Google Scholar 

  • Werner JD, Borevitz JO, Uhlenhaut NH, Ecker JR, Chory J, Weigel D (2005) FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou J-P, Steinmetz A, Shen W-H (2007) Di- and tri- but not mono-methylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Tony Gendall for ideas and helpful discussions. Our research was supported by a University of Otago Research Grant (CLD) and the Marsden Fund (RCM). REL was funded by an AGMARDT Postdoctoral Fellowship and JMR was a recipient of a Bright Futures Enterprise PhD Scholarship from the Tertiary Education Commission and Grasslanz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard C. Macknight or Catherine L. Day.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risk, J.M., Laurie, R.E., Macknight, R.C. et al. FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important. Plant Mol Biol 73, 493–505 (2010). https://doi.org/10.1007/s11103-010-9635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9635-2

Keywords

Navigation