Skip to main content
Log in

The 5′UTR of CCA1 includes an autoregulatory cis element that segregates between light and circadian regulation of CCA1 and LHY

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The transcription factor CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) participates in both light and circadian clock regulation in Arabidopsis. Two sets of transgenic plants in which GFP was fused to the CCA1 promoter with (1.3-kb fragment) or without (1.01-kb fragment) its 5′UTR were engineered. The transgenic plants transformed with the promoter including the 5′UTR had altered circadian regulation resulting in elongated hypocotyls, a bushy appearance and delayed flowering. In contrast, the transgenic plants transformed with the promoter without the 5′UTR showed earlier flowering than the wild type. Changes in CCA1, LHY and TOC1 gene expression were investigated under light–dark (L:D) fluctuations, continuous darkness (D:D) and continuous light (L:L). The circadian expression of CCA1 was altered in both sets of transgenic plants, being repressed in the plants transformed with the 1.01-kb fragment and constitutively overexpressed in those transformed with the 1.3-kb fragment. Under L:D conditions, regulation of LHY and TOC1 expression was separated from CCA1 regulation in both sets of transgenic plants, with intact rhythmic expression of both LHY and TOC1. Under D:D conditions, the rhythmic expression of LHY and TOC1 was lost in the 1.3 plants but retained with some erratic pattern under L:L conditions. In the 1.01 plants, under both D:D and L:L conditions the rhythmic expression was retained. These results indicate separate light-induced signal-transmission pathways for LHY and CCA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  CAS  PubMed  Google Scholar 

  • Alabadi D, Yanovsky MJ, Más P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757–761

    Article  CAS  PubMed  Google Scholar 

  • Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000) All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5:517–522

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad Sci Paris. Life Science 316:1194–1199

    CAS  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation: uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Brusslan JA, Tobin EM (1992) Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci USA 89:7791–7795

    Article  CAS  PubMed  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1316

    Article  CAS  PubMed  Google Scholar 

  • Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9(8):R130

    Article  PubMed  Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297

    Article  CAS  PubMed  Google Scholar 

  • Davis SJ, Millar AJ (2001) Watching the hands of the Arabidopsis biological clock. Genome Biol 2(3):reviews1008.1–1008.4

    Google Scholar 

  • Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550

    Article  CAS  PubMed  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HC, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JJ (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • El-Assal SE, Alonso-Blanco C, Peeters AJM, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  CAS  Google Scholar 

  • Eriksson ME, Millar AJ (2003) The circadian clock. A plant’s best friend in a spinning world. Plant Physiol 132:732–738

    Article  CAS  PubMed  Google Scholar 

  • Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:159–162

    Article  CAS  PubMed  Google Scholar 

  • Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54

    Article  PubMed  Google Scholar 

  • Fowler S, Lee K, Ocochi H, Samach A, Richardson K, Morris B, Coupland G, Petterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112(1):327–336

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, Webb AR (2006) How plants tell the time? Biochem J 397:15–24

    Article  CAS  PubMed  Google Scholar 

  • Green RM, Tobin EM (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96:4176–4179

    Article  CAS  PubMed  Google Scholar 

  • Green RM, Tingay S, Wang XY, Tobin EM (2002) Circadian rhythms confer a high level of fitness to Arabidopsis plants. Plant Physiol 129:576–582

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15:2719–2729

    Article  CAS  PubMed  Google Scholar 

  • Han L (2006) Genetic and molecular analysis of a novel F-Box protein Zeitlupe, in the Arabidopsis circadian clock. Dissertation, Ohio State University, OH

  • Harmer S (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17:1926–1940

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 17:215–253

    Article  CAS  PubMed  Google Scholar 

  • Harmon FG, Imaizumi T, Kay SA (2005) The plant circadian clock: review of a clockwork Arabidopsis. Annu Plant Rev 20:1–23

    Google Scholar 

  • Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102:10387–10392

    Article  CAS  PubMed  Google Scholar 

  • Hicks KA, Millar AJ, Carré IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  CAS  PubMed  Google Scholar 

  • Hicks KA, Albertson TA, Wagner DR (2001) EARLY FLOWERING 3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:339–349

    Article  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Nakamichi N, Nakamura Y, Niwa Y, Kato T, Murakami M, Kita M, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T (2007) Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. Plant Cell Physiol 48(7):971–983

    Article  CAS  PubMed  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–490

    Article  CAS  PubMed  Google Scholar 

  • Kenigsbuch D, Tobin EM (1995) A region of the Arabidopsis Lhcb1*3 promoter that binds to CA-1 activity is essential for high expression and phytochrome regulation. Plant Physiol 108:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Kevei E, Gyula P, Hall A, Kozma-Bognar L, Kim WY, Eriksson ME, Toth R, Hanano S, Feher B, Southern MM, Bastow RM, Viczian A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol 140:933–945

    Article  CAS  PubMed  Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Song HR, Taylor BL, Carré IA (2003a) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J 22:935–944

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Yi H, Choi G, Shin B, Song PS (2003b) Functional characterization of Phytochrome Interacting Factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15:2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Locke JCW, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1:2005.0013

    Google Scholar 

  • Locke JCW, Kozma-Bognar L, Gould PD, Fehér B, Kevei É, Nagy F, Turner MS, Hall A, Millar AJ (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59

    Article  PubMed  Google Scholar 

  • Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol 150:834–843

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T, Mazuno T (2002) The APRR1/TOC1 quintet implicated in the circadian rhythm of Arabidopsis thaliana: I. Characterization with APRR1 overexpression plants. Plant Cell Physiol 43:58–69

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tryon EL, Kreps JA, Harmer SL (2007) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143:473–486

    Article  CAS  PubMed  Google Scholar 

  • Más P (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49:491–500

    Article  PubMed  Google Scholar 

  • Más P, Alabadí D, Yanovsky MJ, Oyama T, Kay SA (2003a) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223–236

    Article  PubMed  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    Article  PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T (2002a) Aberrant expression of the light inducible and circadian regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana. Plant Cell Physiol 43:833–843

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T (2002b) The APR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: II. Characterization with CCA1-over-expressing plants. Plant Cell Physiol 43:118–122

    Article  CAS  PubMed  Google Scholar 

  • Maxwell BB, Anderson CR, Poole DS, Kay SA, Chory J (2003) HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of Chlorophyll a/b-Binding Protein 2 expression. Plant Physiol 133:1565–1577

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803

    Article  CAS  PubMed  Google Scholar 

  • McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144:391–401

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis thaliana. Plant Physiol 130:627–639

    Article  Google Scholar 

  • Michael TP, McClung CR (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38

    Article  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Coupland G (2000) ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci 5:409–411

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629–641

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    Article  CAS  PubMed  Google Scholar 

  • Naef F (2005) Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. Mol Syst Biol 1:2005.0019

  • Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T (2005a) The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol 46:609–619

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005b) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Matsushika A, Yamashino T, Mizuno T (2005c) Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana. Plant Cell Physiol 44:360–365

    Article  Google Scholar 

  • Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–340

    Article  CAS  PubMed  Google Scholar 

  • Onai K, Ishiura M (2005) PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10:963–972

    Article  CAS  PubMed  Google Scholar 

  • Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481–1485

    Article  CAS  PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005a) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38

    Article  Google Scholar 

  • Salomé PA, McClung CR (2005b) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803

    Article  PubMed  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Vernadette S, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Kim WY, Geng R (2004) The F-Box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782

    Article  CAS  PubMed  Google Scholar 

  • Song HR, Carré IA (2005) DET1 regulates the proteasomal degradation of LHY, a component of the Arabidopsis circadian clock. Plant Mol Biol 57:761–771

    Article  CAS  PubMed  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somer DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an Autoregulatory Response Regulator homolog. Science 289:768–771

    Article  CAS  PubMed  Google Scholar 

  • Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci USA 95:11020–11025

    Article  CAS  PubMed  Google Scholar 

  • Ueda HR (2006) Systems biology flowering in the plant clock field. Mol Syst Biol 2:60

    Article  PubMed  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1209–1217

    Google Scholar 

  • Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A myb related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    Article  CAS  PubMed  Google Scholar 

  • Yakir E, Hilman D, Harir Y, Green R (2007) Regulation of output from the plant circadian clock. FEBS J 274:335–345

    Article  CAS  PubMed  Google Scholar 

  • Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Meeks-Wagner DR (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J 10:691–702

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger MN, Farré EM, Taylor SR, Kay SA, Doyle FJ (2006) A novel computational model of the circadian clock in Arabidopsis that incorporate PRR7 and PRR9. Mol Syst Biol 2:58

    Article  PubMed  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Genet Gen 251(2):196–203

    CAS  Google Scholar 

  • Zhong HH, Resnick AS, Straume M, McClung CR (1997) Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell 9(6):947–955

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kenigsbuch.

Additional information

Alona Ovadia and Hilla Tabibian-Keissar have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovadia, A., Tabibian-Keissar, H., Cohen, Y. et al. The 5′UTR of CCA1 includes an autoregulatory cis element that segregates between light and circadian regulation of CCA1 and LHY . Plant Mol Biol 72, 659–671 (2010). https://doi.org/10.1007/s11103-010-9605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9605-8

Keywords

Navigation