Skip to main content
Log in

Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In angiosperms the strictly light-dependent reduction of protochlorophyllide to chlorophyllide is catalyzed by NADPH:protochlorophyllide oxidoreductase (POR). The Arabidopsis thaliana genome encodes three structurally related but differentially regulated POR genes, PORA, PORB and PORC. PORA is expressed primarily early in development—during etiolation, germination and greening. In contrast, PORB and PORC are not only expressed during seedling development but also throughout the later life of the plant, during which they are responsible for bulk chlorophyll synthesis. The Arabidopsis porB-1 porC-1 mutant displays a severe xantha (highly chlorophyll-deficient) phenotype characterized by smaller prolamellar bodies in etioplasts and decreased thylakoid stacking in chloroplasts. Here we have demonstrated the ability of an ectopic PORA overexpression construct to restore prolamellar body formation in the porB-1 porC-1 double mutant background. In response to illumination, light-dependent chlorophyll production, thylakoid stacking and photomorphogenesis are also restored in PORA-overexpressing porB-1 porC-1 seedlings and adult plants. An Arabidopsis porB-1 porC-1 double mutant can therefore be functionally rescued by the addition of ectopically expressed PORA, which suffices in the absence of either PORB or PORC to direct bulk chlorophyll synthesis and normal plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Armstrong GA, Apel K, Rüdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5:40–44

    Article  CAS  PubMed  Google Scholar 

  • Franck F, Sperling U, Frick G, Pochert B, van Cleve B, Apel K, Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124:1678–1696

    Article  CAS  PubMed  Google Scholar 

  • Frick G, Su Q, Apel K, Armstrong GA (2003) An arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35:141–153

    Article  CAS  PubMed  Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H, Takamiya K (2000) NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64:147–154

    Article  CAS  PubMed  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    CAS  PubMed  Google Scholar 

  • Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649

    Article  CAS  PubMed  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Fukuda H, Sugiyama M (2001) Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. Plant J 27:275–284

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16:88–98

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Ham H, Apel K (2005) Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of arabidopsis seedlings. Plant J 42:329–340

    Article  CAS  PubMed  Google Scholar 

  • Lebedev N, Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58:5–23

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H, Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74:165–172

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974

    Article  CAS  PubMed  Google Scholar 

  • Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235

    CAS  PubMed  Google Scholar 

  • Melkozernov AN, Barber J, Blankenship RE (2006) Light harvesting in photosystem I supercomplexes. Biochemistry 45:331–345

    Article  CAS  PubMed  Google Scholar 

  • Mock H, Keetman U, Kruse E, Rank B, Grimm B (1998) Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol 116:107–116

    Article  CAS  Google Scholar 

  • Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J (2007) Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci USA 104:678–683

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S, Springer A, Buhr F, Lahroussi A, Samol I, Bonneville JM, Tichtinsky G, von Wettstein D, Reinbothe C, Reinbothe S (2007) A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 104:2019–2023

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K, Lebedev N (1996) Evolution of chlorophyll biosynthesis–the challenge to survive photooxidation. Cell 86:703–705

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, Lebedev N, Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397:80–84

    Article  CAS  Google Scholar 

  • Reinbothe S, Pollmann S, Springer A, James RJ, Tichtinsky G, Reinbothe C (2005) A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH:protochlorophyllide oxidoreductase (POR) A. Plant J 42:1–12

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Rosinski J, Rosen WG (1972) Chloroplast development: fine structure and chlorophyll synthesis. Q Rev Biol 47:160–191

    Article  Google Scholar 

  • Runge S, Sperling U, Frick G, Apel K, Armstrong GA (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9:513–523

    Article  CAS  PubMed  Google Scholar 

  • Sanda S, Amasino RM (1995) Genetic and physiological analysis of flowering time in the C24 line of Arabidopsis thaliana. Weeds World 2:2–8

    CAS  Google Scholar 

  • Selstam E, Sandelius AS (1984) A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipid and polypeptide composition. Plant Physiol 76:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Selstam E, Schelin J, Brain T, Williams WP (2002) The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). Eur J Biochem 269:2336–2346

    Article  CAS  PubMed  Google Scholar 

  • Solymosi K, Martinez K, Kristof Z, Sundqvist C, Boddi B (2004) Plastid differentiation and chlorophyll biosynthesis in different leaf layers of white cabbage (Brassica oleracea cv. capitata). Physiol Plantarum 121:520–529

    Article  CAS  Google Scholar 

  • Solymosi K, Smeller L, Ryberg M, Sundqvist C, Fidy J, Boddi B (2007) Molecular rearrangement in POR macrodomains as a reason for the blue shift of chlorophyllide fluorescence observed after phototransformation. Biochim Biophys Acta 1768:1650–1658

    Article  CAS  PubMed  Google Scholar 

  • Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972

    Article  CAS  PubMed  Google Scholar 

  • Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658

    Article  CAS  PubMed  Google Scholar 

  • Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813

    Article  CAS  PubMed  Google Scholar 

  • Teakle GR, Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296:225–230

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rosario Barbieri for her advice, Rebecca Lamb and Patrice Hamel for their comments, Kathy Wolken at The Ohio State University Campus Microscopy and Imaging Facility for assistance with the electron microscopy, Dick Sayre for providing access to the fluorescence spectrophotometer, and the Nottingham Arabidopsis Stock Centre (Nottingham, UK) and The Arabidopsis Biological Resource Center (Columbus, OH, USA) for the generous donation of seed lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy N. Paddock.

Additional information

This work was financially supported by The Ohio State University and a National Science Foundation grant (IOB#0450114) to Gregory A. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paddock, T.N., Mason, M.E., Lima, D.F. et al. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol 72, 445–457 (2010). https://doi.org/10.1007/s11103-009-9582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9582-y

Keywords

Navigation