Skip to main content
Log in

Rice phot1a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The aim of this work was to characterize the phot1 mutant of rice during early seedling growth in various light conditions. We isolated the rice T-DNA insertion mutant phot1a-1 and compared it to the Tos17 insertion mutant phot1a-2. When phot1a mutants were grown under WL (100) and BL (40 μmol m−2 s−1), they demonstrated a considerable reduction in photosynthetic capacity, which included decreased leaf CO2 uptake and plant growth. Pigment analysis showed no significant difference between wild-type and mutants in the Chl a:b ratios, whereas in the latter, total concentration was reduced (a 2-fold decrease). Carotenoid contents of the mutants were also decreased considerably, implying the involvement of phot1a in pigment degradation. Deletion of phot1a showed higher contents of H2O2 in leaves. Chloroplastic APX and SOD activities were lower in the mutants whereas the activities of cytosolic enzymes were increased. Immunoblotting indicated reduced accumulation of photosystem proteins (D1, D2, CP43, Lhca2, and PsaC) relative to the other light-harvesting complexes in the mutant. We conclude that the defect of Os Phot1a affects degradation of chlorophylls and carotenoids, and under photosynthetically active photon fluxes, mutation of phot1a results in loss of photosynthetic capacity owing to the damage of photosystems caused by elevated H2O2 accumulation, leading to a reduction in plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BL:

Blue light

CAT:

Catalase

Chl:

Chlorophyll

Chl-APX:

Chloroplastic ascorbate peroxidase

ETR:

Electron transport rate

GUS:

β-glucuronidase

HPLC:

High performance liquid chromatography

H2O2 :

Hydrogen peroxide

NPQ:

Non-photochemical quenching

PS:

Photosystem(s)

Phot:

Phototropin

RT-PCR:

Reverse-transcriptase-polymerase chain reaction

ROS:

Reactive oxygen species

O •−2 :

Superoxide anion

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SOD:

Superoxide dismutase

WL:

White light

References

  • Alia KY, Sakamoto A, Nonaka H, Hayashi H, Saradhi P, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220:498–502

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–255

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  PubMed  CAS  Google Scholar 

  • Casazza AP, Tarantino D, Soave C (2001) Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth Res 68:175–180

    Article  PubMed  CAS  Google Scholar 

  • Choi SM, Jeong SW, Jeong WJ, Kwon SY, Park YI (2002) Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta 216:315–324

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Swartz TE, Bogomolni RA, Briggs WR (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptors function. Plant J 32:205–219

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Sánchez N, Apel K (2006) Cryptochrome-1-dependent execution of programmed cell death induced by single oxygen in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:17036–17041

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Shigenaga T, Emi T, Kinoshita T, Shimazaki K (2004) A transgene encoding a blue light receptor, phot1, restores blue light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot 55:517–523

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium-chloride-simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J Chromatogr 543:137–145

    Article  CAS  Google Scholar 

  • Goh C-H, Schreiber U, Hedrich R (1999) New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant Cell Environ 22:1057–1070

    Article  CAS  Google Scholar 

  • Goh C-H, Jung K-H, Roberts SK, McAinsh MR, Hetherington AM, Park YI, Suh K, An G, Nam HG (2004) Mitochondria provide the main source of cytosolic ATP for activation of outward-rectifying K+ channels in mesophyll protoplast of chlorophyll-deficient mutant rice seedlings. J Biol Chem 279:6874–6882

    Article  PubMed  CAS  Google Scholar 

  • Hernández JA, Olmose E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox sensing domain. Science 278:2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Iino M, Haga K (2005) Roles played by auxin in phototropism and photomorphogenesis. In: Wada M, Shimazaki K et al (eds) Light sensing in plants. Springer-Verlag Press, Berlin, pp 257–264

    Google Scholar 

  • Im C-S, Eberhard S, Hung K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Sharma P, Tyagi SB, Tyagi AK, Khurana JP (2007) Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Sci 172:164–171

    Article  CAS  Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi SH, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (2000) Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. Plant Cell Physiol 41:84–93

    PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of phototropin 2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol 45:416–426

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382

    Article  CAS  Google Scholar 

  • Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Sasaki T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues, OsNPH1a and OsNPH1b, are differently photoregulated. Plant Cell Physiol 41:415–423

    PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Lin X, Watson JC (1999) Photoregulated expression of the PsPK3 and PsPK5 genes in pea seedlings. Plant Mol Biol 39:231–242

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during assembly of the head of bacteriophage T4. Nature 27:680–685

    Article  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14:207–225

    Google Scholar 

  • Mao J, Zhang Y-C, Sang Y, Li Q-H, Yang H-Q (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate: hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  PubMed  CAS  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Park E-J, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flower from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 101:2223–2228

    Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    PubMed  CAS  Google Scholar 

  • Sawada S, Sato M, Kasai A, Yaochi D, Kameya Y, Matsumoto I, Kasai M (2003) Analysis of the feed-forward effects of sink activity on the photosynthetic source-sink balance in single-rooted sweet potato leaves. I. Activation of RuBPcase through the development of sinks. Plant Cell Physiol 44:190–197

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a noninstructive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies. Springer press, Berlin, pp 49–70

    Google Scholar 

  • Stone BB, Liscum E (2004) Photoreceptors and associated signaling III: phototropins. In: Encyclopedia plant crop science. Springer press, Berlin, pp. 889–892

  • Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534

    Article  PubMed  CAS  Google Scholar 

  • Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Telfer A (2005) Too much light? How beta-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: procedure and some application. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Komatsu S (2000) Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol 41:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Zacherl M, Huala E (1997) Isolation and characterization of cDNAs from oat encoding a serine/threonine kinase: a nearly component in signal transduction for phototropism (accession no. AF033096 and AF033097) (PGR98-028). Plant Cell Physiol 116:869

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Makoto Takano (NIAS, Japan) for providing seed materials of rice Phot1a-2. C–H Goh gratefully acknowledges the information of primers for phot1a-2 and critical discussion for the manuscript of Prof. Moritoshi Iino (Osaka City University, Japan) and Prof. Elizabeth Van Volkenburgh (University of Washington, USA). This work was supported by grants from the Korea Research Foundation (KRF-2004-015-C00532) and provided in part by Crop Functional Genomics Program (GC1111) to G.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyo Goh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, CH., Jang, S., Jung, S. et al. Rice phot1a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. Plant Mol Biol 69, 605–619 (2009). https://doi.org/10.1007/s11103-008-9442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9442-1

Keywords

Navigation