Skip to main content
Log in

Evidence that the BONZAI1/COPINE1 protein is a calcium- and pathogen-responsive defense suppressor

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Copines are calcium-responsive, phospholipid-binding proteins involved in cellular signaling. The Arabidopsis BONZAI1/COPINE1 (BON1/CPN1) gene is a suppressor of defense responses controlled by the disease resistance (R) gene homolog SNC1. The BON1/CPN1 null mutant cpn1-1 has a recessive, temperature- and humidity-dependent, lesion mimic phenotype that includes activation of Pathogenesis-Related (PR) gene expression. Here, we demonstrated that the accumulation of BON1/CPN1 protein in wild-type plants was up-regulated by bacterial pathogen inoculation and by the activation of defense signaling responses controlled by two R genes, SNC1 and RPS2. Interestingly, however, over-accumulation of BON1/CPN1 in two BON1/CPN1 promoter T-DNA insertion mutants did not affect resistance to a bacterial pathogen. Promoter deletion analysis identified a 280 bp segment of the BON1/CPN1 promoter as being required for pathogen-induced gene expression; the same promoter region was also required for calcium ionophore-induced gene expression. Leaf infiltration with calcium ionophore triggered high-level PR gene expression specifically in cpn1-1 plants grown under permissive conditions, while co-infiltration of the calcium chelator EGTA attenuated this effect. These results explain the conditional nature of the cpn1-1 phenotype and are consistent with BON1/CPN1 being a calcium- and pathogen-responsive plant defense suppressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306–10311. doi:10.1073/pnas.95.17.10306

    Article  PubMed  CAS  Google Scholar 

  • Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92:6597–6601. doi:10.1073/pnas.92.14.6597

    Article  PubMed  CAS  Google Scholar 

  • Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965. doi:10.1126/science.278.5345.1963

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE, Tomsig JL, Snyder SL, Gautier M-C, Skouri F, Beisson J et al (1998) The copines, a novel class of C2 domain-containing, calcium-dependent, phopholipid-binding proteins conserved from Paramecium to humans. J Biol Chem 273:1393–1402. doi:10.1074/jbc.273.3.1393

    Article  PubMed  CAS  Google Scholar 

  • Damer CK, Bayeva M, Hahn ES, Rivera J, Socec CI (2005) Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biol 12(6):46

    Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N et al (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829. doi:10.1104/pp.103.021428

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B et al (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724. doi:10.1094/MPMI-19-0711

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155. doi:10.1105/tpc.105.032508

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427. doi:10.1146/annurev.arplant.55.031903.141624

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Grisafi P, Cheng S-H, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272. doi:10.1101/gad.918101

    Article  PubMed  CAS  Google Scholar 

  • Innes RW, Bent AF, Kunkel BN, Bisgrove SR, Staskawicz BJ (1993) Molecular characterization of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J Bacteriol 175:4859–4869

    PubMed  CAS  Google Scholar 

  • Jambunathan N, McNellis TW (2003) Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. Plant Physiol 132:1370–1381. doi:10.1104/pp.103.022970

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838. doi:10.1038/342837a0

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R et al (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748. doi:10.1105/tpc.106.042713

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz BJ (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene. Plant Cell 5:865–875

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defense-signalling pathways. New Phytol 171:249–269. doi:10.1111/j.1469-8137.2006.01777.x

    Article  PubMed  CAS  Google Scholar 

  • Lee T-F, McNellis TW (2008) Elimination of keratin artifact bands from western blots by using low concentrations of reducing agents. Anal Biochem. doi:10.1016/j.ab.2008.07.035

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  PubMed  CAS  Google Scholar 

  • Li X, Clarke JD, Zhang Y, Dong X (2001) Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 14:1131–1139. doi:10.1094/MPMI.2001.14.10.1131

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang S, Yang H, Hua J (2007) The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. Mol Plant Microbe Interact 20:1449–1456. doi:10.1094/MPMI-20-11-1449

    Article  PubMed  CAS  Google Scholar 

  • McNellis TW, Mudgett MB, Li K, Aoyama T, Horvath D, Chua NH et al (1998) Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J 14:247–257. doi:10.1046/j.1365-313X.1998.00106.x

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed  CAS  Google Scholar 

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776. doi:10.1016/j.phytochem.2004.04.033

    Article  PubMed  CAS  Google Scholar 

  • Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296. doi:10.1093/nar/27.1.295

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:690–700

    Google Scholar 

  • Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994. doi:10.1105/tpc.004630

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Uknes SJ, Ho TH (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652–23660

    PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517. doi:10.1016/S0022-2836(75)80083-0

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL, Creutz CE (2000) Biochemical characterization of copine: a ubiquitous Ca2+-dependent phospholipid binding protein. Biochemistry 39:16163–16175. doi:10.1021/bi0019949

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL, Creutz CE (2002) Copines: a ubiquitous family of Ca2+-dependent phospholipid binding proteins. Cell Mol Life Sci 59:1467–1477. doi:10.1007/s00018-002-8522-7

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL, Snyder SL, Creutz CE (2003) Identification of targets for calcium signaling through the copine family of proteins. Characterization of a coiled-coil copine-binding motif. J Biol Chem 278:10048–10054. doi:10.1074/jbc.M212632200

    Article  PubMed  CAS  Google Scholar 

  • Tomsig JL, Sohma H, Creutz CE (2004) Calcium-dependent regulation of tumour necrosis factor-α receptor signaling by copine. Biochem J 376:1089–1094. doi:10.1042/BJ20031654

    Article  Google Scholar 

  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. doi:10.1093/aob/mcg164

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Cody SH, Gehring CA, Parish RW, Harris PJ (1990) Confocal imaging of ionised calcium in living plant cells. Cell Calcium 11:291–297. doi:10.1016/0143-4160(90)90006-G

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120. doi:10.1104/pp.101.3.1119

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Hua J (2004) A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16:1060–1071. doi:10.1105/tpc.020479

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Li Y, Hua J (2006a) The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J 48:238–248. doi:10.1111/j.1365-313X.2006.02869.x

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Yang H, Grisafi P, Sanchatjate S, Fink GR, Sun Q et al (2006b) The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J 45:166–179. doi:10.1111/j.1365-313X.2005.02585.x

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Yang S, Li Y, Hua J (2007) The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol 145:135–146. doi:10.1104/pp.107.100800

    Article  PubMed  CAS  Google Scholar 

  • Yu GL, Katagiri F, Ausubel FM (1993) Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas-syringae strains expressing the avirulence gene avrRpt2. Mol Plant Microbe Interact 6:434–443

    PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646. doi:10.1105/tpc.015842

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Brian J. Staskawicz for the ndr1-1 seeds and Dr. Xin Li for the snc1 seeds. This work was supported in part by a United States Department of Agriculture Cooperative State Research, Education, and Extension Service grant program (USDA-CSREES grant no. 2002-35319-11561 to T. W. M.). This work was also supported by the Department of Plant Pathology at the Pennsylvania State University and by the Intercollege Graduate Program in Plant Biology at the Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. McNellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TF., McNellis, T.W. Evidence that the BONZAI1/COPINE1 protein is a calcium- and pathogen-responsive defense suppressor. Plant Mol Biol 69, 155–166 (2009). https://doi.org/10.1007/s11103-008-9413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9413-6

Keywords

Navigation