Skip to main content
Log in

BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover. A number of the target genes have been shown to be expressed in meristems or to be involved in cell wall modifications associated with dividing/growing cells. One of the BBM target genes encodes an ADF/cofilin protein, ACTIN DEPOLYMERIZING FACTOR9 (ADF9). The consequences of BBM:GR activation on the actin cytoskeleton were followed using the GFP:FIMBRIN ACTIN BINDING DOMAIN2 (GFP:FABD) actin marker. Dexamethasone-mediated BBM:GR activation induced dramatic changes in actin organization resulting in the formation of dense actin networks with high turnover rates, a phenotype that is consistent with cells that are rapidly undergoing cytoplasmic reorganization. Together the data suggest that the BBM transcription factor activates a complex network of developmental pathways associated with cell proliferation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GR:

Glucocorticoid receptor

CHX:

Cycloheximide

DEX:

Dexamethasone

EFS:

Embryo forming structure

2,4-D:

2,4-Dichlorophenoxyacetic acid

qRT-PCR:

Quantitative real-time RT-PCR

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • An Y-Q, McDowell JM, Huang S, McKinney EC, Chamblin EC, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Lauren V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  PubMed  CAS  Google Scholar 

  • Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the tobacco plastid psbA promoter. Nucleic Acids Res 17:19–29

    Article  PubMed  CAS  Google Scholar 

  • De Klerk GJ, Arnholdt-Schmitt B, Lieberei R, Neuman KH (1997) Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol Plant 39:53–66

    Article  Google Scholar 

  • de Vries SC (1998) Making embryos in plants. Trends Plant Sci 3:451–452

    Article  Google Scholar 

  • Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209

    Article  PubMed  CAS  Google Scholar 

  • Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng XW (2005) Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17:1180–1195

    Article  PubMed  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Gallois J-L, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Gallois J-L, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  PubMed  CAS  Google Scholar 

  • Gungabissoon RA, Jiang CJ, Drobak BK, Maciver SK, Hussey PJ (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16:689–696

    Article  CAS  Google Scholar 

  • Harada J (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133:653–663

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Henderson JT, Li H-C, Rider SD, Mordhorst AP, Romero-Severson J, Cheng J-C, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE Acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Ann Rev Plant Biol 57:109–125

    Article  CAS  Google Scholar 

  • Imin N, Nizamidin M, Wu T, Rolfe BG (2006) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  PubMed  Google Scholar 

  • Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant development Curr Biol 14:145–149

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Schena M, Walbot V, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee K, West M, Lo R, Kwong R, Yamagish IK, Fischer R, Goldberg R, Harada J (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez M, Greco R, Becker JD, Dixit S, Bergervoet JHW, Karaba A, de Folter S, Pereira A (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62:825–843

    Article  PubMed  CAS  Google Scholar 

  • Mayer K, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Cheng J-C, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Rider SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka DR, Kandasamy MK, McKinney EC, Burgos-Rivera B, Meagher RB (2007) The ancient subclasses of Arabidopsis ACTIN DEPOLYMERIZING FACTOR genes exhibit novel and differential expression. Plant J 3:460–472

    Article  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena ED, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JB, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:41–51

    Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Science USA 98:11806–11811

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Wang HH et al (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    Article  PubMed  CAS  Google Scholar 

  • Tusher V, Tibshirani R, Chu C (2001) Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • van der Honing HS, Emons AM, Ketelaar T (2007) Actin based processes that could determine the cytoplasmic architecture of plant cells. Biochim Biophys Acta 1773:604–614

    Article  PubMed  Google Scholar 

  • Voigt B, Timmers ACJ, Samaj J, Muller J, Baluska F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings Eur J Cell Biol 84:608–695

    Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Remko Offringa and Gerco Angenent for comments on the manuscript, and Jos Molthoff, Esther van Tiel Roeland and Marina Bouman for technical assistance. We are grateful to the University of Arizona for supplying the microarrays used in this study. TK was funded by an NWO-VENI fellowship (863.04.003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Boutilier.

Electronic supplementary material

Below are the links to the electronic supplementary material.

(DOC 47  kb))

(XLS 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passarinho, P., Ketelaar, T., Xing, M. et al. BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68, 225–237 (2008). https://doi.org/10.1007/s11103-008-9364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9364-y

Keywords

Navigation