Skip to main content
Log in

Helitron mediated amplification of cytochrome P450 monooxygenase gene in maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The mass movement of gene sequences by Helitrons has significantly contributed to the lack of gene collinearity reported between different maize inbred lines. However, Helitron captured-genes reported to date represent truncated versions of their progenitor genes. In this report, we provide evidence that maize CYP72A27-Zm gene represents a cytochrome P450 monooxygenase (P450) gene recently captured by a Helitron and transposed into an Opie-2 retroposon. The four exons of the CYP72A27 gene contained within the element contain a putative open reading frame (ORF) for 428 amino acid residues. We provide evidence that Helitron captured CYP72A27-Zm is transcribed. To identify the progenitor gene and the evolutionary time of capture, we searched the plant genome database and discovered other closely related CYP72A27-Zm genes in maize and grasses. Our analysis indicates that CYP72A27-Zm represents an almost complete copy of maize CYP72A26-Zm gene captured by a Helitron about 3.1 million years ago (mya). The Helitron-captured gene then duplicated twice, approximately 1.5–1.6 mya giving rise to CYP72A36-Zm and CYP72A37-Zm. These data provide evidence that Helitrons can capture and mobilize intact genes that are transcribed and potentially encode biologically relevant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bennetzen JM (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:1–7

    Article  Google Scholar 

  • Brunner S, Pea G, Rafalski A (2005) Origins, genetic organization and transcription of a family of non-autonomous Helitron elements in maize. Plant J 43:799–810

    Article  PubMed  CAS  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  CAS  Google Scholar 

  • Dooner HK, Lal SK, Hannah LC (2006) Suggested guidelines for naming Helitrons. Maize Genetics Coop Newslet 81, www.agron.missouri.edu/mnl/81

  • Elrouby N, Bureau TE (2001) A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 276:41963–41968

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Wessler SR (2001) Treasures in the attic: Rolling circle transposons discovered in eucaryotic genomes. Proc Natl Acad Sci USA 98:8923–8924

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2003) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546–557

    PubMed  CAS  Google Scholar 

  • Gupta S, Gallavotti A, Stryker GA, Schmidt RJ, Lal SK (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple cellular genes. Plant Mol Biol 57:115–127

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jin Y-K, Bennetzen JL (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling circle transposons in eukaryotes. Proc Natl Acad Sci USA 17:8714–8719

    Article  Google Scholar 

  • Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 11:6569–6574

    Article  Google Scholar 

  • Kawasaki S, Nitasaka E (2004) Characterization of Tpn1 family in the Japanese morning glory: En/Spm-related transposable elements capturing host genes. Plant Cell Physiol 45:933–944

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei N (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Hannah LC (2005a) Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds. Proc Natl Acad Sci USA 102:9993–9994

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Hannah LC (2005b) Massive changes of the maize genome are caused by Helitrons. Heredity 95:421–422

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Giroux MJ, Brendel V, Vallejos E, Hannah LC (2003) The maize genome contains a Helitron insertion. Plant Cell 15:381–391

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Georgelis N, Hannah LC (2008) Helitrons: their impact on maize genome evolution and diversity. In: Hake S, Bennetzen JL (eds) The maize handbook: domestication, genetics, and genome (in press)

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A, 2005 Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Poulter RT, Goodwin TJ, Butler MI (2003) Vertebrate helentrons and other novel Helitrons. Gene 313:201–212

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis Lucifugus. Proc Natl Acad Sci USA 104:1895–1900

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons in maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposon in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Ann Rev Plant Biol 54:629–667

    Article  CAS  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Talbert LE, Chandler VL (1988) Characterization of a highly conserved sequence related to mutator transposable elements in maize . Mol Biol Evol 5:519–529

    PubMed  CAS  Google Scholar 

  • Usuka J, Brendel V (2000) Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoring. J Mol Biol 297:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Usuka J, Zhu W, Brendel V (2000) Optimal spliced alignment of homologous cDNA to a genomic DNA template. Bioinformatics 16:203–211

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Flettereick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777

    Article  PubMed  CAS  Google Scholar 

  • Xu JH, Messing J (2006) Maize haplotype with a Helitron-amplified cytodine deaminase gene copy. BMC Genet 7:52

    Article  PubMed  Google Scholar 

  • Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111

    PubMed  Google Scholar 

  • Zhang Z, Gerstein M (2004) Large scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation, The University of Texas at Austin

Download references

Acknowledgement

This work immensely benefited from maize CYP72A26 and CYP72A27 genes deposited in GenBank by Dr. Mary Schuler’s group, University of Illinois. We thank Dr. Schuler for her kind help and suggestions during the course of this project. The work was supported by National Science Foundation (USA) grant 0514759 to SL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Lal.

Additional information

Natalie Jameson and Nikolaos Georgelis contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jameson, N., Georgelis, N., Fouladbash, E. et al. Helitron mediated amplification of cytochrome P450 monooxygenase gene in maize. Plant Mol Biol 67, 295–304 (2008). https://doi.org/10.1007/s11103-008-9318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9318-4

Keywords

Navigation