Skip to main content
Log in

Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

ERES:

ER export site

COPII:

Coat protein complex II

GEF:

Guanosine nucleotide exchange factor

YFP:

Yellow fluorescent protein

GFP:

Green fluorescent protein

References

  • Andreeva AV, Kutuzov MA, Evans DE, Hawes CR (1998) Proteins involved in membrane transport between the ER and the Golgi apparatus: 21 putative plant homologues revealed by dbEST searching. Cell Biol Int 22:145–160

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Weissman J, Bannykh S, Nuoffer C, Balch WE (1998) Cargo selection by the COPII budding machinery during export from the ER. J Cell Biol 141:61–70

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Fish KN, Bannykh S, Weissman J, Roberts TH, Lippincott-Schwartz J, Balch WE (2001) The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J Cell Biol 152:213–229

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907

    Article  PubMed  CAS  Google Scholar 

  • Bar-Peled M, Raikhel NV (1997) Characterization of AtSEC12 and AtSAR1. Proteins likely involved in endoplasmic reticulum and Golgi transport. Plant Physiol 114:315–324

    Article  PubMed  CAS  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12:2201–2218

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419:271–277

    Article  PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N (2002a) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14:1077–1092

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Fricker M, Hawes C (2002b) A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3:520–530

    Article  PubMed  CAS  Google Scholar 

  • Crofts AJ, Leborgne-Castel N, Hillmer S, Robinson DG, Phillipson B, Carlsson LE, Ashford DA, Denecke J (1999) Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell 11:2233–2248

    Article  PubMed  CAS  Google Scholar 

  • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771

    Article  PubMed  CAS  Google Scholar 

  • d’Enfert C, Gensse M, Gaillardin C (1992) Fission yeast and a plant have functional homologues of the Sar1 and Sec12 proteins involved in ER to Golgi traffic in budding yeast. Embo J 11:4205–4211

    PubMed  CAS  Google Scholar 

  • Forster R, Weiss M, Zimmermann T, Reynaud EG, Verissimo F, Stephens DJ, Pepperkok R (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16:173–179

    Article  PubMed  CAS  Google Scholar 

  • Giraudo CG, Maccioni HJ (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753–3766

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Linstedt AD (2006) COPII-Golgi protein interactions regulate COPII coat assembly and Golgi size. J Cell Biol 174:53–63

    Article  PubMed  CAS  Google Scholar 

  • Hanton SL, Renna L, Bortolotti LE, Chatre L, Stefano G, Brandizzi F (2005) Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. Plant Cell 17:3081–3093

    Article  PubMed  CAS  Google Scholar 

  • Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F (2007) De novo formation of plant endoplasmic reticulum export sites is membrane cargo-induced and signal-mediated. Plant Physiol 143:1640–1650

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 155:937–948

    Article  PubMed  CAS  Google Scholar 

  • Kim WY, Cheong NE, Je DY, Kim MG, Lim CO, Bahk JD, Cho MJ, Lee SY (1997) The presence of a Sar1 gene family in Brassica campestris that suppresses a yeast vesicular transport mutation Sec12-1. Plant Mol Biol 33:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Kuge O, Dascher C, Orci L, Rowe T, Amherdt M, Plutner H, Ravazzola M, Tanigawa G, Rothman JE, Balch WE (1994) Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J Cell Biol 125:51–65

    Article  PubMed  CAS  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  PubMed  CAS  Google Scholar 

  • Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617

    Article  PubMed  CAS  Google Scholar 

  • Matheson LA, Hanton SL, Brandizzi F (2006) Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. Curr Opin Plant Biol 9:601–609

    Article  PubMed  CAS  Google Scholar 

  • Matheson LA, Hanton SL, Rossi M, Latijnhouwers M, Stefano G, Renna L, Brandizzi F (2007) Multiple roles of ADP-ribosylation factor 1 in plant cells include spatially regulated recruitment of coatomer and elements of the Golgi matrix. Plant Physiol 143:1615–1627

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S, Schekman R, Yeung T (1998) COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93:263–275

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Schekman R, Orci L, Heuser JE (2001) Surface structure of the COPII-coated vesicle. Proc Natl Acad Sci USA 98:13705–13709

    Article  PubMed  CAS  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Peng R, De Antoni A, Gallwitz D (2000) Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J Biol Chem 275:11521–11528

    Article  PubMed  CAS  Google Scholar 

  • Phillipson BA, Pimpl P, daSilva LL, Crofts AJ, Taylor JP, Movafeghi A, Robinson DG, Denecke J (2001) Secretory bulk flow of soluble proteins is efficient and COPII dependent. Plant Cell 13:2005–2020

    Article  PubMed  CAS  Google Scholar 

  • Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA (1999) LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 145:659–672

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Press, Cold Spring Harbour

    Google Scholar 

  • Sato K, Nakano A (2005) Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12:167–174

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Iida A, Morikawa H (1998) Transient expression of foreign genes in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Methods Mol Biol 82:219–225

    PubMed  CAS  Google Scholar 

  • Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L, Schekman R (2000) Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol 151:973–984

    Article  PubMed  CAS  Google Scholar 

  • Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46:95–110

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Tada M, Saito C, Yashiroda H, Nakano A (1998) Isolation of a tobacco cDNA encoding Sar1 GTPase and analysis of its dominant mutations in vesicular traffic using a yeast complementation system. Plant Cell Physiol 39:590–599

    PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda T, Sato K, Abe H, Nagata T, Nakano A (2000) A dominant negative mutant of sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 23:517–525

    Article  PubMed  CAS  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  CAS  Google Scholar 

  • Votsmeier C, Gallwitz D (2001) An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. Embo J 20:6742–6750

    Article  PubMed  CAS  Google Scholar 

  • Ward TH, Polishchuk RS, Caplan S, Hirschberg K, Lippincott-Schwartz J (2001) Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 155:557–570

    Article  PubMed  CAS  Google Scholar 

  • Weissman JT, Aridor M, Balch WE (2001) Purification and properties of rat liver Sec23-Sec24 complex. Meth Enzymol 329:431–438

    Article  PubMed  CAS  Google Scholar 

  • Wendeler MW, Paccaud JP, Hauri HP (2007) Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep 8:258–264

    Article  PubMed  CAS  Google Scholar 

  • Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531

    Article  PubMed  CAS  Google Scholar 

  • Yoshihisa T, Barlowe C, Schekman R (1993) Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259:1466–1468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed with grants awarded to F.B. from the Canada Foundation for Innovation (CFI), the Canada Research Chair (CRC) program, Natural Science and Engineering Research Council of Canada (NSERC) and Department of Energy, Michigan State University. L.A.M. is supported by an NSERC post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Brandizzi.

Additional information

Sally L. Hanton and Laurent Chatre have contributed equally to this work.

Electronic supplementary material

11103_2008_9317_MOESM1_ESM.tif

Comparison of the intracellular localisations of AtSARA1a and AtSARA1b in Arabidopsis leaves. A) AtSARA1a-YFP labels the cytosol (arrow) and punctate structures (arrowheads). B) AtSARA1b-YFP appears to be associated with the ER membranes (arrow) as well as labelling punctate structures (arrowheads) and cytosol Lower panels show magnified areas of the images in A and B to emphasise the differences between the cytosolic localisation of AtSARA1a-YFP and the more reticular pattern exhibited by AtSARA1b-YFP. Bars = 5 μm (TIF 792 kb)

11103_2008_9317_MOESM2_ESM.tif

Comparison of the intracellular localisations of AtSARA1a N159T and AtSARA1b T159N A) AtSARA1aN159T-YFP labels the cytosol (arrow) and punctate structures (arrowheads) in the same manner as wild-type AtSARA1a-YFP. B) AtSARA1bT159N-YFP demonstrates a similar localisation to that of AtSARA1b-YFP. The fluorescence is distributed at punctate structures (arrowheads) and in a reticular pattern comparable to ER labelling (arrow), as well as being partially cytosolic. Lower panels show magnified areas of the images in A and B to emphasise the differences between the cytosolic and reticular patterns exhibited by the position 159 mutants. Bars = 5 μm (TIF 797 kb)

11103_2008_9317_MOESM3_ESM.tif

Alignment of the sequences of Arabidopsis and tobacco Sar1 isoforms. Protein sequences of two Arabidopsis and three tobacco Sar1 isoforms are shown; the three tobacco isoforms are labelled P, A and B, representing accession numbers P52885, AAF17254 and BAA13463 respectively. NtSar1P is the isoform used in previous studies [12, 39, 40]. All five sequences have a high level of similarity, emphasised by grey shading of residues that are identical between at least four of the protein sequences. Note that the GNKXD motif (underlined) is absent only in NtSar1P, and the C-terminal residue in all cases except AtSARA1b is lysine. (TIF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanton, S.L., Chatre, L., Matheson, L.A. et al. Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion. Plant Mol Biol 67, 283–294 (2008). https://doi.org/10.1007/s11103-008-9317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9317-5

Keywords

Navigation