Skip to main content
Log in

The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali R, Zielinski RE, Berkowitz GA (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot 57:125–138

    Article  PubMed  CAS  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1082–1095

    Article  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215–221

    PubMed  CAS  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT (1996) Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol 112:297–302

    PubMed  CAS  Google Scholar 

  • Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787

    Article  PubMed  CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    Article  PubMed  CAS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    Article  PubMed  CAS  Google Scholar 

  • Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci U S A 92:6597–6601

    Article  PubMed  CAS  Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 123:728–731

    Article  CAS  Google Scholar 

  • Chandra S, Stennis M, Low PS (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272:28274–28280

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci U S A 97:9323–9328

    Article  PubMed  CAS  Google Scholar 

  • Coupe SA, Watson LM, Ryan DJ, Pinkney TT, Eason JR (2004) Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. J Exp Bot 55:59–68

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8:1793–1807

    Article  PubMed  CAS  Google Scholar 

  • del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensititve response of plants to pathogens. Curr Biol 8:1129–1132

    Article  PubMed  Google Scholar 

  • Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence. Gene 179:45–51

    Article  PubMed  CAS  Google Scholar 

  • Ferrando A, Kron SJ, Rios G, Fink G, Serrano R (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cell Biol 15:5470–5481

    PubMed  CAS  Google Scholar 

  • Flor H (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol 2:280–286

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    PubMed  CAS  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    Article  PubMed  CAS  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384

    Article  PubMed  CAS  Google Scholar 

  • Groover A, DeWitt N, Heidel A, Jones AM (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197–211

    Article  Google Scholar 

  • Gunawardena AH, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels plant leaf shape during development. Plant Cell 16:60–73

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  PubMed  CAS  Google Scholar 

  • Heath M (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Ho PK, Hawkins CJ (2005) Mammalian initiator apoptotic caspases. FEBS J 272:5436–5453

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Tsitsigiannis DI, Jones JD, Mundy J (2007) Inducible cell death in plant immunity. Semin Cancer Biol 17:166–187

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O· 2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A 94:4800–4805

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Sian JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  PubMed  CAS  Google Scholar 

  • Jones A, Dangl J (1996) Logjam at the Styx. Trends Plant Sci 1:114–119

    Article  Google Scholar 

  • Jurkowski GI, Smith RK Jr, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant–Microbe Interact 17:511–520

    Article  PubMed  CAS  Google Scholar 

  • Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K (2004) Cryptogein-induced initial events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca(2+) transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581(12):2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Kassanis B (1952) Some effects of high temperature on the susceptibility of plants to infection with viruses. Ann Appl Bop 39:358–369

    Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  • Kiba A, Takata O, Ohnishi K, Hikichi Y (2006) Comparative analysis of induction pattern of programmed cell death and defense-related responses during hypersensitive cell death and development of bacterial necrotic leaf spots in eggplant. Plant Cell Physiol 45:160–170

    Google Scholar 

  • Köhler C, Neuhaus G (1998) Cloning and partial characterization of two putative cyclic nucleotide-regulated ion channels from Arabidopsis thaliana, designated CNGC1 (Y16327), CNGC2 (Y16328) (PGR98-062). Plant Physiol 116:1604

    Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  PubMed  Google Scholar 

  • Köhler C, Merkle T, Roby D, Neuhaus G (2001) Developmentally regulated expression of cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta 213:327–332

    Article  PubMed  CAS  Google Scholar 

  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920

    Article  PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  PubMed  CAS  Google Scholar 

  • Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417–428

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, Berkowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of leaf guard and mesophyll cells. J Biol Chem 279:35306–35312

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–408

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  PubMed  CAS  Google Scholar 

  • Li X, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast, and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505

    Article  PubMed  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Mercier RW, Rabinowitz NM, Gaxiola RA, Ali R, Berkowitz GA (2004) Use of hygromycin hypersensitivity of a K+ uptake yeast mutant as a functional assay of plant cyclic nucleotide gated cation channels. Plant Physiol Biochem 42:529–536

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Lam E (1995) In situ detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiol 108:489–493

    PubMed  CAS  Google Scholar 

  • Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Simon L, Lam E (1997) Pathogen-induced programmed cell death in tobacco. J Cell Sci 110:1333–1344

    PubMed  CAS  Google Scholar 

  • Muller EM, Locke EG, Cunningham KW (2001) Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159:1527–1538

    PubMed  CAS  Google Scholar 

  • Navarre DA, Wolpert TJ (1999) Victorin induction of an apoptosis/senescence-like response in oats. Plant Cell 11:237–249

    Article  PubMed  CAS  Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125:615–626

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684

    PubMed  CAS  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Fluhr R (1992) Calcium requirement for ethylene-dependent responses. Plant Cell 4:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 9:1897–1906

    Article  CAS  Google Scholar 

  • Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death Induced by fungal infection or by abiotic treatments. Plant Cell 8:393–402

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    Article  PubMed  CAS  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci U S A 95:1944–1949

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, D’Ascenzo M, Martin GB (2000) Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto-Pto-mediated hypersensitive response. EMBO J 19:2257–2269

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Hata S, Takata Y, Nakayashiki H, Tosa Y, Mayama S (2001) Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol Plant–Microbe Interact 14:477–486

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide sitgnaling? Trends Plant Sci 8:286–293

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937–1951

    Article  PubMed  CAS  Google Scholar 

  • Whyte M (1996) ICE/CED-3 proteases in apoptosis. Trends Cell Biol 6:245–248

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10:585–598

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF (2001) Environmentally-sensitive, SA-dependent defense response in the cpr22 mutant of Arabidopsis. Plant J 26:447–459

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763

    Article  PubMed  CAS  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A 95:7819–7824

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Menke FLH, Yoshioka K, Moeder W, Shirano Y, Klessig DF (2004) High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J 39:920–932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Dinesh-Kumar for providing us with the VIGS system. We also give thanks to Dr. E. Lam and Dr. N. Watanabe for insightful suggestions and Dr. N. Dengler for fruitful discussions. For effective advice and help on microscopic analysis, we would like to thank to Dr. A. Bruce and Mrs. K. Sault. This research has been supported by National Science and Engineering Research Council of Canada (NSERC), Canadian Foundation of Innovation (CFI) and Ontario Research Fund (ORF) for K.Y, Ontario Graduate Scholarship (OGS) for W.U and NSF award 0344141 for G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Yoshioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W. et al. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol Biol 65, 747–761 (2007). https://doi.org/10.1007/s11103-007-9239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9239-7

Keywords

Navigation