Skip to main content
Log in

The moss genes PpSKI1 and PpSKI2 encode nuclear SnRK1 interacting proteins with homologues in vascular plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

Activation domain

AMPK:

AMP-activated kinase

cDNA:

complementary DNA

DBD:

DNA binding domain

EST:

expressed sequence tag

GFP:

green fluorescent protein

NLS:

nuclear localization signal

ORF:

open reading frame

PCR:

polymerase chain reaction

qRT-PCR:

quantitative real-time reverse transcriptase polymerase chain reaction

RT-PCR:

reverse transcriptase polymerase chain reaction

Ski:

Snf1-related kinase interactor

SnRK:

Snf1-related kinase

YTH:

yeast two hybrid

References

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100:247–250

    Article  PubMed  CAS  Google Scholar 

  • Bouly JP, Gissot L, Lessard P, Kreis M, Thomas M (1999) Arabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINalpha1, an SNF1-like protein kinase. Plant J 18:541–550

    Article  PubMed  CAS  Google Scholar 

  • Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269:11442–11448

    PubMed  CAS  Google Scholar 

  • Charbon G, Breunig KD, Wattiez R, Vandenhaute J, Noël-Georis I (2004) Key Role of Ser562/661 in Snf1-Dependent Regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis. Mol Cell Biol 24:4083–4091

    Article  PubMed  CAS  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  PubMed  CAS  Google Scholar 

  • Cove D, Benzanilla M, Harries P, Quatrano R (2006) Mosses as Model Systems for the Study of Metabolism and Development. Annu Rev Plant Biol 57:497–520

    Article  PubMed  CAS  Google Scholar 

  • Dale S, Wilson WA, Edelman AM, Hardie DG (1995) Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361:191–195

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Carling D, Hardie DG (1989) Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem 186:123–128

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Vierstra RD (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3:43–48

    CAS  Google Scholar 

  • Dingwall C, Laskey RA (1998) Nuclear import: a tale of two sites. Curr Biol 8:R922–R924

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Fontana JR, Dupper G, Ma C, Martienssen R, Strauss S, Meilan R (2004) Gene and enhancer trap tagging of vascular-expressed genes in poplar trees. Plant Physiol 134:1742–1751

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54:467–475

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  • Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47:211–223

    Article  PubMed  CAS  Google Scholar 

  • Hey S, Mayerhofer H, Halford NG, Dickinson JR (2007) DNA sequences from Arabidopsis which encode protein kinases and function as upstream regulators of Snf1 in yeast. J Biol Chem 282:10472–10479

    Article  PubMed  CAS  Google Scholar 

  • Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Kern L, deMontigny J, Jund R, Lacroute F (1990) The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88:149–157

    Article  PubMed  CAS  Google Scholar 

  • Kleinow T, Bhalerao R, Breuer F, Umeda M, Salchert K, Koncz C (2000) Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast. Plant J 23:115–122

    Article  PubMed  CAS  Google Scholar 

  • Köhler RH, Zipfel WR, Webb WW, Hanson MR (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11:613–621

    Article  PubMed  Google Scholar 

  • Kulma A, Villadsen D, Campbell DG, Meek SE, Harthill JE, Nielsen TH, MacKintosh C (2004) Phosphorylation and 14–3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Plant J 37:654–667

    Article  PubMed  CAS  Google Scholar 

  • Laurie S, McKibbin RS, Halford NG (2003) Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos. J Exp Bot 54:739–747

    Article  PubMed  CAS  Google Scholar 

  • Lakatos L, Klein M, Hofgen R, Banfalvi Z (1999) Potato StubSNF1 interacts with StubGAL83: a plant protein kinase complex with yeast and mammalian counterparts. Plant J 17:569–574

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Alba MM, Kleinow T, Koncz C, Pages M (2001) Domain fusion between SNF1-related kinase subunits during plant evolution. EMBO Rep 2:55–60

    Article  PubMed  CAS  Google Scholar 

  • Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269:2361–2364

    PubMed  CAS  Google Scholar 

  • Nair R, Rost B (2005) Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 348:85–100

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M (2003) Comparative genomics of Physcomitrella patens gemetophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proc Natl Acad Sci USA 100:8007–8012

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021–4026

    PubMed  CAS  Google Scholar 

  • Purcell PC, Smith AM, Halford NG (1998) Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J 14:195–202

    Article  CAS  Google Scholar 

  • Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H (2006) Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol 140:263–278

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schaefer D (2002) A new moss genetics: Targeted mutagenesis in Physcomitrella patens. Ann Rev Plant Biol 53:477–501

    Article  CAS  Google Scholar 

  • Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    PubMed  CAS  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  • Slocombe SP, Laurie S, Bertini L, Beaudoin F, Dickinson JR, Halford NG (2002) Identification of SnIP1, a novel protein that interacts with SNF1-related protein kinase (SnRK1). Plant Mol Biol 49:31–44

    Article  PubMed  CAS  Google Scholar 

  • Smith FC, Davies SP, Wilson WA, Carling D, Hardie DG (1999) The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett 453:219–223

    Article  PubMed  CAS  Google Scholar 

  • Sugden C, Donaghy PG, Halford NG, Hardie DG (1999a) Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol 120:257–274

    Article  PubMed  CAS  Google Scholar 

  • Sugden C, Crawford RM, Halford NG, Hardie DG (1999b) Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. Plant J 19:433–439

    Article  PubMed  CAS  Google Scholar 

  • Thelander M, Olsson T, Ronne H (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23:1900–1910

    Article  PubMed  CAS  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280

    PubMed  CAS  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG (2001) Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J 28:431–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) and the Swedish Foundation for Strategic Research to HR, by a grant from the Carl Trygger Foundation to MT, and by a grant from the Uppsala Centre for Comparative Genomics to MT and HR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Thelander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelander, M., Nilsson, A., Olsson, T. et al. The moss genes PpSKI1 and PpSKI2 encode nuclear SnRK1 interacting proteins with homologues in vascular plants. Plant Mol Biol 64, 559–573 (2007). https://doi.org/10.1007/s11103-007-9176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9176-5

Keywords

Navigation