Skip to main content

Advertisement

Log in

Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cellulose is central to plant development and is synthesised at the plasma membrane by an organised protein complex that contains three different cellulose synthase proteins. The ordered assembly of these three catalytic subunits is essential for normal cellulose synthesis. The way in which the relative levels of these three proteins are regulated within the cell is currently unknown. In this work it is shown that one of the cellulose synthases essential for secondary cell wall cellulose synthesis in Arabidopsis thaliana, AtCesA7, is phosphorylated in vivo. Analysis of in vivo phosphorylation sites by mass spectrometry reveals that two serine residues are phosphorylated. These residues occur in a region of hyper-variability between the cellulose synthase catalytic subunits. The region of the protein containing these phosphorylation sites can be phosphorylated by a plant extract in vitro. Incubation of this region with plant extracts results in its degradation via a proteasome dependant pathway. Full length endogenous CesA7 is also degraded via a proteasome dependant pathway in whole plant extracts. This data suggests that phosphorylation of the catalytic subunits may target them for degradation via a proteasome dependant pathway. This is a possible mechanism by which plants regulate the relative levels of the three proteins whose specific interaction are required to form an active cellulose synthase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AtCesA:

Arabidopsis thaliana cellulose synthase catalytic subunit

CesA:

Cellulose synthase catalytic subunit

IRX:

Irregular Xylem

IP:

Immunoprecipitation

VR1:

Variable Region 1

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

References

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose synthesis in Arabidopsis. Science 279:717–720

    Article  PubMed  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Brown RM (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A33:1345–1373

    CAS  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Englehardt J (1995) Sources, industrial derivatives and commercial applications of cellulose. Carbohydr Eur 12:5–14

    Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Hofte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm—Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JC, Taylor NG, Turner SR (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–1748

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Brown RM (1986) Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120

    Article  Google Scholar 

  • Hardin SC, Huber SC (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiol Biochem 42:197–208

    Article  PubMed  CAS  Google Scholar 

  • Hardin SC, Tang G-Q, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35:588–603

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Lab. Press, Plainview, NY

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006). The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114

    Article  PubMed  CAS  Google Scholar 

  • Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Paradez AR, Somerville CR, Ehrhardt DW (2006). Visualisation of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  Google Scholar 

  • Peck SC (2006) Analysis of protein phosphorylation: methods and strategies for studying kinases and substrates. Plant J 45:512–522

    Article  PubMed  CAS  Google Scholar 

  • Samuga A, Joshi CP (2002) A new cellulose synthase gene (PtrCesA2) from aspen xylem is orthologous to Arabidopsis AtCesA7 (irx3) gene associated with secondary cell wall synthesis. Gene 296:37–44

    Article  PubMed  CAS  Google Scholar 

  • Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Ann Rev Plant Biol 55:555–590

    Article  CAS  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary cell wall. Plant Physiol 133:73–83

    Article  PubMed  CAS  Google Scholar 

  • Tang G-Q, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–93

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Gardiner JC, Wightman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338

    Article  CAS  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779

    Article  PubMed  CAS  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Neil Taylor was supported by the award of a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil G. Taylor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, N.G. Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation. Plant Mol Biol 64, 161–171 (2007). https://doi.org/10.1007/s11103-007-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9142-2

Keywords

Navigation