Skip to main content
Log in

Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Limited information is available about the roles of RING-finger proteins in plant defense. A pepper CaRFP1 encoding the C3-H-C4 type RING-finger protein that physically interacted with the basic PR-1 protein CABPR1 was isolated from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. The CaRFP1 protein has VWFA domain, and N-terminal serine-rich and C-terminal cysteine-rich regions. The CaRFP1 transcripts accumulated earlier than did those of the basic PR-1 gene CABPR1 during the incompatible interaction of pepper leaves with X. campestris pv. vesicatoria, as well as in the systemic, uninoculated pepper leaf tissues. The CaRFP1 gene also was induced in pepper leaf tissues infected by Colletotrichum coccodes. The CaRFP1 gene was strongly induced much earlier by salicylic acid, ethylene and methyl jasmonate treatments, as well as environmental stresses including methyl viologen, mannitol and NaCl treatments. Overexpression of the CaRFP1 gene in the transgenic Arabidopsis plants conferred disease susceptibility to Pseudomonas syringae pv. tomato infection, accompanied by reduced PR-2 and PR-5 gene expression, suggesting that the CaRFP1 acts as an E3 ligase for polyubiquitination of target PR proteins. Exogenous salicylic acid treatment also abolished PR-2 and PR-5 gene expression in the transgenic plants. Differential osmotic stress tolerance was induced by high salt and drought in the CaRFP1-overexpressing plants during germination and seedling development, which was closely correlated with abscisic acid sensitivity of Arabidopsis plants. These results suggest that the CaRFP1 gene functions as an early defense regulator controlling bacterial disease susceptibility and osmotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208:1–11

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Apel H, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6:395–401

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Ciaffi M, Paolacci AR, D’Aloisio E, Tanzarella OA, Porceddu E (2005) Identification and characterization of gene sequences expressed in wheat spikelets at the heading stage. Gene 346:221–230

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71:791–801

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6:307–311

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Annals Bot 92:329–337

    Article  CAS  Google Scholar 

  • Dong CH, Agrawal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  PubMed  CAS  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    Article  PubMed  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell S15–S45

  • Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestle D, Williems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  • González-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JDG (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–1083

    Article  PubMed  Google Scholar 

  • Guo D, Spetz C, Saarma M, Valkonen JPT (2003) Two potato proteins, including a novel RING-finger protein (HIP1), interact with the potyviral multifunctional protein HCpro. Mol Plant-Microbe Interact 16:405–410

    PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2002) Temporal and subcellular localization of PR-1 proteins in tomato stem tissues infected by virulent and avirulent isolates of Phytophthora capsici. Protoplasma 219:131–139

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2005a) Induction of enhanced disease resistance and oxidative stress tolerance by overexpression of pepper basic PR-1 gene in Arabidopsis. Physiolgia Plantarum 124:267–277

    Article  CAS  Google Scholar 

  • Hong JK, Hwang BK (2005b) Functional characterization of PR-1 protein, β-1,3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum. Plant Pathol J 21:195–206

    Google Scholar 

  • Hong JK, Jung HW, Kim YJ, Hwang BK (2000) Pepper gene encoding a basic class II chitinase is inducible by pathogen and ethephon. Plant Sci 159:39–49

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Lee SC, Hwang BK (2005) Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene 356:169–180

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JDR (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429–439

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, McNellis TW (2003) Regulation of Arabidopsis COPINE1 gene expression in response to pathogens and abiotic stimuli. Plant Physiol 132:1370–1381

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Blue EK, Dixon S, Shao Z, Gallagher PJ (2002) A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J Biol Chem 277:46980–46986

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Hwang BK (2000) Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. Vesicatoria. Mol Plant-Microbe Interact 13:136–142

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Nam J, Boyces DC, Holt BF III, Hubert DA, Wiig A, Dangle JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44:258–270

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ (1997) The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:277–296

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Hwang BK (2000) Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiol Plant 108:51–60

    CAS  Google Scholar 

  • Kim YJ, Martin GB (2004) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Plant Pathol J 20:7–12

    Google Scholar 

  • Koo BK, Yoon KJ, Yoo KW, Lim HS, Song R, So JH, Kim CH, Kong YY (2005) Mind bomb-2 is an E3 ligase for Notch ligand. J Biol Chem 280:22335–22342

    Article  PubMed  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc-finger proteins: new insights into structural and functional diversity. Curr Opin Struc Biol 11:39–46

    Article  CAS  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu ZK (2001a) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15:912–924

    Article  CAS  Google Scholar 

  • Lee S, Choi D (2004) Platform of hot pepper defense genomics: Isolation of pathogen responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Plant Pathol J 20:46–51

    Google Scholar 

  • Lee SC, Hwang BK (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790–800

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim YJ, Hwang BK (2001b) A pathogen-induced chitin-binding protein gene from pepper: Its isolation and differential expression in pepper leaves treated with pathogens, ethephon, methyl jasmonate or wounding. Plant Cell Physiol 42:1321–1330

    Article  CAS  Google Scholar 

  • Lee YK, Hippe-Sanwald S, Lee SC, Hohenberg H, Hwang BK (2000) In situ localization of PR-1 mRNA and PR-1 protein in compatible and incompatible interactions of pepper stems with Phytophthora capsici. Protoplasma 211:64–75

    Article  CAS  Google Scholar 

  • Lovering R, Hanson IM, Borden KL, Martin S, O’Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993) Identification and preliminary characterization of a protein motif related to the zinc-finger. Proc Natl Acad Sci USA 90:2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Rate DN, Song JT, Greenberg JT (2003) ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15:2408–2420

    Article  PubMed  CAS  Google Scholar 

  • Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, Hayashi H, Sugano S (2003) Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene 22:3307–3318

    Article  PubMed  CAS  Google Scholar 

  • Molnár G, Bancoş S, Nagy F, Szekeres M (2002) Characterization of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 215:127–133

    Article  PubMed  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  PubMed  CAS  Google Scholar 

  • Park JM (2005) The hypersensitive response. A cell death during disease resistance. Plant Pathol J 21:99–101

    Google Scholar 

  • Salinas-Mondragon RE, Garciduenas-Pina EC, Guzmán P (1999) Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol 40:579–590

    Article  PubMed  CAS  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Guzmán P (2004) Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167:919–929

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  PubMed  CAS  Google Scholar 

  • Takai R, Hasegawa K, Kaku H, Shibuya N, Minami E (2001) Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci 160:577–583

    Article  PubMed  CAS  Google Scholar 

  • Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30:447–455

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Heng HHQ, Ye CJ, Liang SB, Iwata J, Sonobe H, Ohtsuki Y (2003) Down-regulation of a novel actin-binding molecule, skeletrophin, in malignant melanoma. Am J Pathol 163:1395–1404

    PubMed  CAS  Google Scholar 

  • Tomsig JL, Creutz CE (2002) Copines: a ubiquitous family of Ca2+-dependent phospholipid-binding proteins. Cell Mol Life Sci 59:1467–1477

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pierterse CMJ (2006) Significance of inducible defense-related proteins infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrain A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    Article  PubMed  CAS  Google Scholar 

  • Yang CW, González-Lamothe R, Ewan RA, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones JDG, Sadanandom A (2006a) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18:1084–1098

    Article  CAS  Google Scholar 

  • Yang S, Yang H., Grisafi P, Sanchatjate S, Fink GR, Sun Q, Hua J (2006b) The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J 45:166–179

    Article  CAS  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Crop Functional Genomics Center of the 21st Century, Frontier Research Program funded by the Ministry of Science and Technology, Korea and a grant from the Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Additional information

The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number AY775334

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.K., Choi, H.W., Hwang, I.S. et al. Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63, 571–588 (2007). https://doi.org/10.1007/s11103-006-9110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9110-2

Keywords

Navigation