Skip to main content
Log in

Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

PPi has previously been implicated specifically in the co-ordination of the sucrose–starch transition and in the broader context of its role as co-factor in heterotrophic plant metabolism. In order to assess the compartmentation of pyrophosphate (PPi) metabolism in the potato tuber we analysed the effect of expressing a bacterial pyrophosphatase in the amyloplast of wild type tubers or in the cytosol or amyloplast of invertase-expressing tubers. The second and third approaches were adopted since we have previously characterized the invertase expressing lines to both exhibit highly altered sucrose metabolism and to contain elevated levels of PPi (Farré et al. (2000a) Plant Physiol 123:681) and therefore this background rendered questions concerning the level of communication between the plastidic and cytosolic pyrophosphate pools relatively facile. In this study we observed that the increase in PPi in the invertase expressing lines was mainly confined to the cytosol. Accordingly, the expression of a bacterial pyrophosphatase in the plastid of either wild type or invertase-expressing tubers did not lead to a decrease in total PPi content. However, the expression of the heterologous pyrophosphatase in␣the cytosol of cytosolic invertase-expressing tubers led to strong metabolic changes. These results are discussed both with respect to our previous hypotheses and to current models of the compartmentation of potato tuber metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ap Rees T, Morrell S (1990) Carbohydrate metabolism in developing potatoes. Am Pot J 6:835–847

    Article  Google Scholar 

  • Appeldoorn NJG, de Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, van der Plas LHW (1997) Developmental changes of enyzmes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202:220–226

    Article  CAS  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    Article  PubMed  CAS  Google Scholar 

  • Bologa K, Fernie AR, Leisse A, Ehlers Loureiro M, Geigenberger P (2003) A Bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072

    Article  PubMed  CAS  Google Scholar 

  • Beckles DM, Smith AM, ap Rees T (2001) A cytosolic ADP-Glc pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch storing organs. Plant Physiol 125:818–827

    Article  PubMed  CAS  Google Scholar 

  • Burke C, Croteau R (2002) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous highly regulated enzyme in plants. Annu Rev Plant Phys 47:273–298

    Article  CAS  Google Scholar 

  • Davies JM, Poole RJ, Sanders R (1993) The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganic-pyrophosphate-driven reactions of intermediary metabolism. Biochim Biophys Acta 1141:29–36

    Article  CAS  Google Scholar 

  • Davies HV, Shepherd LVT, Burrell MM, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock RD, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie AR (2005) Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol 46:1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112:779–785

    Article  PubMed  CAS  Google Scholar 

  • Dietze J, Blau A, Willmitzer L (1995) Agrobacterium-mediated transformation of potato (Solanum tuberosum). In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer-Verlag, Berlin, pp 24–29

    Google Scholar 

  • Doehlert DC (1990) Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch oil and protein accumulation. Physiol Plantarum 78:560–567

    Article  CAS  Google Scholar 

  • Farré EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato using a nonaqueous fractionation method. Plant Physiol 127:685–700

    PubMed  Google Scholar 

  • Farré EM, Geigenberger P, Willmitzer L, Trethewey RN (2000a) A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber. Plant Physiol 123:681–688

    Article  Google Scholar 

  • Farré EM, Bachmann A, Willmitzer L, Trethewey RN (2000b) Acceleration of potato tuber sprouting by the expression of a bacterial pyrophosphatase. Nat Biotechnol 19:268–272

    Article  Google Scholar 

  • Fernie AR, Roessner U, Geigenberger P (2001a) The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. Plant Physiol 125:1967–1977

    Article  CAS  Google Scholar 

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001b) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

    Article  CAS  Google Scholar 

  • Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Willmitzer L, Trethewey RN (2002a) Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci 7:35–42

    Article  CAS  Google Scholar 

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2002b) Activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase by fructose 2,6-bisphosphate stimulates conversion of hexose phosphates to triose phosphates but does not influence accumulation of carbohydrates in phosphate-deficient tobacco cells. Physiol Plantarum 114:172–181

    Article  CAS  Google Scholar 

  • Fernie AR, Tiessen A, Stitt M, Willmitzer L, Geigenberger P (2002c) Altered metabolic fluxes result from shifts in␣metabolite levels in sucrose phosphorylase-expressing potato tubers. Plant Cell Environ 25:1219–1232

    Article  CAS  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolic profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMP (1987) A comparison of eukaryotic viral 5′-leader sequences as enhancers of messenger-RNA expression in vivo. Nucl Acid Res 15:8693–8711

    CAS  Google Scholar 

  • Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  ADS  Google Scholar 

  • Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673

    Article  CAS  Google Scholar 

  • Geigenberger P, Stamme C, Tjaden J, Schulz S, Quick PW, Betsche T, Kersting HJ, Neuhaus HE (2001) Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate trasnporter activity. Plant Physiol 125:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M (2000). Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M (1997). Regulation of sucrose and starch metabolism in potato tubers in response to short-term water defecit. Planta 201:502–518

    Article  CAS  Google Scholar 

  • Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Sonnewald U, Stitt M (1998) Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose–starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205:428–437

    Article  PubMed  CAS  Google Scholar 

  • Gross P, ap Rees T (1986) Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts. Planta 167:140–145

    Article  CAS  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbate content and accumulation in plants. Physiologia Plantarum 126:343–355

    Article  CAS  Google Scholar 

  • Jansen R, Reinländer H, Steppuhn J, Herrmann RG (1988) Analysis of cDNA clones encoding the entire precursorpolypeptide for ferredown:NADP+ oxidoreductase from spinach. Curr Genet 13:517–522

    Article  PubMed  CAS  Google Scholar 

  • Junker BH, Wuttke R, Tiessen A, Geigenberger P, Sonnnewald U, Willmitzer L, Fernie AR (2004) Temporally regulated expression of a yeast invertase in potato tubers allows dissection of the complex metabolic phenotype obtained following its constitutive expression. Plant Mol Biol 56:91–110

    Article  PubMed  CAS  Google Scholar 

  • Junker BH, Wurtke R, Nunes-Nesi A, Steinhauser D, Schauer N, Büssis D, Willmitzer L, Fernie AR (2006) Enhancing vacuolar sucrose cleavage within the developing potato tuber has only minor effects on metabolism. Plant Cell Physiol 47:277–289

    Google Scholar 

  • Kawalaki IH, Slattery CJ, Ito H, Okita TW (2000) The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Aust J Plant Physiol 27:561–570

    Google Scholar 

  • Klaus SMJ, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF, Hanson AD (2005) A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Boil Chem 280:5274–5280

    Google Scholar 

  • Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    Article  PubMed  CAS  Google Scholar 

  • Kim WT, Franceschi VR, Okita TW, Robinson NL, Morell M, Preiss J (1989) Immunocytochemical localiztion of ADPglucose pyrophosphorylase in developing tuber cells. Plant Physiol 91:217–220

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowsky L (1994) Glucose activation and metabolism through UDP-Glucose pyrophosphorylase in plants. Phytochemistry 37:1507–1515

    Article  Google Scholar 

  • Kruger NJ (1997) Carbohydrate synthesis and degradation. In: Dennis D, Turpin DH, Lefebvr DD, Layzell DB (eds) Plant metabolism. Addison Wesley Longman, Harlow, pp 83–104

    Google Scholar 

  • Kossmann J, Lloyd JR (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19:171–226

    Article  CAS  Google Scholar 

  • Klaus SM, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF, Hanson AD (2005) A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 280:5274–5280

    Article  PubMed  CAS  Google Scholar 

  • Liu XJ, Prat S, Willmitzer L, Frommer WB (1990) Cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter-GUS-gene fusion. Mol Gen Genet 223:401–406

    Article  PubMed  CAS  Google Scholar 

  • Lunn J, Douce R (1993) Transport of inorganic pyrophosphate across the spinach chloroplast envelope. Biochem J 290:375–379

    PubMed  CAS  Google Scholar 

  • Merlo L, Geigenberger P, Hajirezaei M, Stitt M (1993) Changes in carbohydrates metabolites and enzyme activities in potato tubers during development, and within a single tuber along a stolon-apex gradient. J Plant Physiol 142:392–402

    CAS  Google Scholar 

  • Meyer CR, Rustin P, Wedding RT (1989) A kinetic study of the effects of phosphate and organic phosphates on the activity of phosphoenolpyruvate carboxylase from Crassula-Argentea. Arch Biochem Biophys 271:84–97

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Roeber B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in trasngenic potatoes leads to sugar-storing tubers and influences tuber fromation and expression of tuber storage protein genes. EMBO J 11:1229–1238

    CAS  Google Scholar 

  • Mustroph A, Albrecht G, Hajirezaei M, Grimm B, Biemelt S (2005) Low levels of pyrophosphate in transgenic potato plants expressing E.coli pyrophosphatase lead to decreased vitality under oxygen deficiency. Ann Bot 96:717–726

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Carrari F, Lytovchenko A, Snith AMO, Ehlers-Loureiro M, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthestic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  PubMed  CAS  Google Scholar 

  • Ohta D, Fujimori K, Mizutani M, Nakayama Y, Kunpaisal- Hashimoto R, Munzer S, Kozaki A (2000) Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway. Plant Physiol 122:907–914

    Article  PubMed  CAS  Google Scholar 

  • Park S, Li JS, Pittman JK, Berkowitz GA, Yang HB, Undurraga S, Morris J, Hirshi KD, Gaxiola RA (2005) Up-regulation of a H+pyrophosphatase (H+PPase) as a strategy to engineer drought resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  PubMed  CAS  ADS  Google Scholar 

  • Quick WP, Neuhaus HE, Stitt M (1989) Increased pyrophosphate is responsible for a restriction of sucrose synthesis after supplying fluoride to spinach leaf discs. Biochim Biophys Acta 973:263–271

    CAS  Google Scholar 

  • Rademacher T, Hausler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhansel C (2002) An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J 32:25–39

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Sosa M, Sonnewald U, Frommer WB, Stratmann M, Schell J, Willmitzer L (1989) Both developmental and metabolic signals activate the promoter of the class I patatin gene. EMBO J 8:23–29

    PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas-chromatography mass-spectrometry. Plant J 23:131–142

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Willmitzer L, Fernie AR (2001b) High resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127L:749–764

    Article  Google Scholar 

  • Roessner-Tunali U, Liu J, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas-chromatography–mass-spectrometry following incubation in 13C labelled isotopes. Plant J 39:668–679

    Article  PubMed  CAS  Google Scholar 

  • Ross H, Davies HV, Burch LR, Viola R, McRae D (1994) Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum). Physiol Plantarum 90:748–756

    Article  CAS  Google Scholar 

  • Schulze S, Mant A, Kossmann J, Lloyd JR (2004) Identification of an Arabidopsis inorganic pyrophosphatase capable of being imported into chloroplasts. FEBS letts 565:101–105

    Article  CAS  Google Scholar 

  • Sonnewald U (1992) Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J 2:571–581

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Hajirezaei MR, Kossmann J, Heyer A, Trethewey RN, Willmitzer L (1997) Expression of a yeast invertase in␣the apoplast of potato tubers increases tuber size. Nat Biotechnol 15:794–797

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Stitt M, Lilley R, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Method Enzymol 174:518–550

    CAS  Google Scholar 

  • Sweetlove LJ, Burrell MM, ap Rees T (1996) Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with␣increased ADPglucose pyrophosphorylase. Biochem J 320:493–498

    PubMed  CAS  Google Scholar 

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  CAS  Google Scholar 

  • Tiessens A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  CAS  Google Scholar 

  • Trethewey RN, Geigenberger P, Riedel K, Hajirezaei M, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and stimulation of glycolysis. Plant J 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Trethewey RN, Riesmeier JW, Willmitzer L, Geigenberger P (1999) Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208:227–238

    Article  CAS  PubMed  Google Scholar 

  • Urbanczyk-Wochniak E, Leisse A, Roessner-Tunali U, Lytovchenko A, Riesemier JW, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolite profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  PubMed  CAS  Google Scholar 

  • Veramendi J, Roessner U, Renz A, Willmitzer L, Trethewey RN (1999) Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121:1–11

    Article  Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13:385–398

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, Stitt M, Heldt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta 893:13–21

    Article  CAS  Google Scholar 

  • Zhen RG, Kin EJ, Rea PR (1997) The molecular and biochemical basis of pyrophosphate-energised proton translocation at the vacuolar membrane. Adv Bot Res 25:297–337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Britta Hausmann and Helga Kulka for their careful attention to our greenhouse plants, Paloma Mas and Megan McKenzie for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Farré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farré, E.M., Tech, S., Trethewey, R.N. et al. Subcellular pyrophosphate metabolism in developing tubers of potato (Solanum tuberosum). Plant Mol Biol 62, 165–179 (2006). https://doi.org/10.1007/s11103-006-9011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9011-4

Keywords

Navigation