Skip to main content
Log in

The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The class B genes, which belong to the MADS-box gene family, play important roles in regulating the development of petals and stamens in flowering plants. To understand the molecular mechanisms of floral development in Agapanthus praecox ssp. orientalis (Agapanthaceae), we isolated and characterized the homologs of the Antirrhinum majus genes GLOBOSA and DEFICIENS in this plant. These were designated as ApGLO and ApDEF, respectively. ApGLO and ApDEF contain open reading frames that encode deduced protein with 210 and 214 amino acid residues, respectively. Phylogenetic analysis indicated that ApGLO and ApDEF belong to the monocot class B gene family. In situ hybridization experiments revealed that hybridization signals of ApGLO and ApDEF were observed in whorl 1 as well as in whorls 2 and 3. Moreover, the flowers of transgenic Arabidopsis plants that ectopically expressed ApGLO formed petal-like organs in whorl 1. These observations indicate that the flower developmental mechanism of Agapanthus follows the modified ABC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.L. Bowman D.R. Smyth E.M. Meyerowitz (1991) ArticleTitleGenetic interactions among floral homeotic genes of Arabidopsis Development 112 1–20

    Google Scholar 

  • R. Carpenter E.S. Coen (1990) ArticleTitleFloral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus Gene. Dev 4 1483–1493

    Google Scholar 

  • M.W. Chase D.E. Soltis P.S. Soltis P.J. Rudall M.F. Fay W.H. Hahn S. Sullivan J. Joseph M. Molvray P.J. Kores T.J. Givnish K.J. Sytsma J.C. Pires (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification K.L. Wilson D.A. Morrison (Eds) MonocotsIII: Systematics and Evolution CRISO publishing Melbourne 3–16

    Google Scholar 

  • S. Cho D. Jang S. Chae K.M. Chung Y.H. Moon G. An S.K. Jang (1999) ArticleTitleAnalysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain Plant Mol. Biol 40 419–429

    Google Scholar 

  • S.J. Clough A.F. Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J 16 735–743

    Google Scholar 

  • E.S. Coen E.M. Meyerowitz (1991) ArticleTitleThe war of the whorls: genetic interactions controlling flower development Nature 353 31–37

    Google Scholar 

  • Q.C.B. Cronk (2002) Perspective and paradigms in plant evo-devo Q.C.B. Cronk R.M. Bateman J.A. Hawkins (Eds) Developmental Genetics and Plant Evolution Taylor & Francis London 1–14

    Google Scholar 

  • L.J. Cseke J. Zheng G.K. Podila (2003) ArticleTitleCharacterization of PTM5 is aspen trees: a MADS-box gene expressed during woody vascular development Gene 318 55–67

    Google Scholar 

  • G.N. Drews J.L. Bowman E.M. Meyerowitz (1991) ArticleTitleNegative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product Cell 65 991–1002

    Google Scholar 

  • M. Egea-Cortines H. Saedler H. Sommer (1999) ArticleTitleTernary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus EMBO J 18 5370–5379

    Google Scholar 

  • M.A. Frohman M.K. Dush G.R. Martin (1988) ArticleTitleRapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer Proc. Natl. Acad. Sci. USA 85 8998–9002

    Google Scholar 

  • K. Goto E.M. Meyerowitz (1994) ArticleTitleFunction and regulation of the Arabidopsis floral homeotic gene PISTILLATA Gene. Dev 8 1548–1560

    Google Scholar 

  • T. Honma K. Goto (2001) ArticleTitleComplexes of MADS-box proteins are sufficient to convert leaves into floral organs Nature 409 525–529

    Google Scholar 

  • H.F. Hsu C.H. Yang (2002) ArticleTitleAn Orchid (Oncidium ‘Gower Ramsey’) AP3-like MADS gene regulates floral formation and initiation Plant Cell Physiol 43 1198–1209

    Google Scholar 

  • T. Jack L.L. Brockman E.M. Meyerowitz (1992) ArticleTitleThe homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens Cell 68 683–687

    Google Scholar 

  • T. Jack G.L. Fox E.M. Meyerowitz (1994) ArticleTitleArabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity Cell 76 703–716

    Google Scholar 

  • A. Kanno H. Saeki T. Kameya H. Saedler G. Theissen (2003) ArticleTitleHeterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana) Plant Mol. Biol 52 831–841

    Google Scholar 

  • E.M. Kramer R.L. Dorit V.F. Irish (1998) ArticleTitleMolecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALLA3 and PISTILLATA MADS-box gene lineages Genetics 149 765–783

    Google Scholar 

  • E.M. Kramer V.S. Stilio P.M. Schluter (2003) ArticleTitleComplex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Rununculaceae Int. J. Plant Sci 164 1–11

    Google Scholar 

  • B.A. Krizek E.M. Meyerowitz (1996) ArticleTitleThe Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function Development 122 11–22

    Google Scholar 

  • R.S. Lamb V.F. Irish (2003) ArticleTitleFunction divergence within the APETALA3 / PISTILLATA floral homeotic gene lineages Proc. Natl. Acad. Sci. USA 100 6558–6563

    Google Scholar 

  • J. Lim Y.H. Moon G. An S.K. Jang (2000) ArticleTitleTwo rice MADS domain proteins interact with OsMADS1 Plant Mol. Biol 44 513–527

    Google Scholar 

  • C. Martin K. Bhatt K. Baumann H. Jin S. Zachgo K. Roberts Z. Schwarz-Sommer B. Glover M. Parez-Rodrigues (2002) ArticleTitleThe mechanics of cell fate determination in petals Phil. Trans. R. Soc. Lond. B Biol. Sci 357 809–813

    Google Scholar 

  • S. Mathews M.J. Donoghue (1999) ArticleTitleThe root of angiosperm phylogeny inferred from duplicate phytochrome genes Science 286 947–950

    Google Scholar 

  • Y.H. Moon J.Y. Jung H.G. Kang G. An (1999) ArticleTitleIdentification of a rice APETALA3 homologue by yeast two-hybrid screening Plant Mol. Biol 40 167–177

    Google Scholar 

  • K. Noda B.J. Glover P. Linstead C. Martin (1994) ArticleTitleFlower color intensity depends on specialized cell shape controlled by a Myb-related transcription factor Nature 369 661–664

    Google Scholar 

  • J.H. Park Y. Ishikawa R. Yoshida A. Kanno T. Kameya (2003) ArticleTitleExpression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L Plant Mol. Biol 51 867–875

    Google Scholar 

  • J.H. Park Y. Ishikawa T. Ochiai A. Kanno T. Kameya (2004) ArticleTitleTwo GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L Plant Cell Physiol 45 325–332

    Google Scholar 

  • G. Perrière M. Gouy (1996) ArticleTitleWWW-Query: an on-line retrieval system for biological sequence banks Biochemie 78 364–369

    Google Scholar 

  • Y.L. Qiu J. Lee F. Bernasconi-Quadroni D.E. Soltis P.S. Soltis M. Zanis E.A. Zimmer Z. Chen V. Savolainen M.W. Chase (1999) ArticleTitleThe earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes Nature 402 404–407

    Google Scholar 

  • Z. Schwartz-Sommer P. Huijser W. Nacken H. Saedler H. Sommer (1990) ArticleTitleGenetic control of flower development by homeotic genes in Antirrhinum majus Science 250 931–936

    Google Scholar 

  • P.S. Soltis D.E. Soltis M.W. Chase (1999) ArticleTitleAngiosperm phylogeny inferred from multiple genes as a tool for comparative biology Nature 402 402–404

    Google Scholar 

  • G.M. Stellari M. Alejandra Jaramillo E.M. Kramer (2004) ArticleTitleEvolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms Mol. Biol. Evol 21 506–519

    Google Scholar 

  • G. Theissen A. Becker A. Di Rosa A. Kanno J.T. Kim T. Münster K.-U. Winter H. Saedler (2000) ArticleTitleA short history of MADS-box genes in plants Plant Mol. Biol 42 115–149

    Google Scholar 

  • G. Theissen (2001) ArticleTitleDevelopment of floral organ identity: stories from the MADS house Curr. Opin. Plant Biol 4 75–85

    Google Scholar 

  • J.D. Thompson D.G. Higgins T.J. Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice Nucleic Acids Res 22 4673–4680

    Google Scholar 

  • W. Tröbner L. Ramirez P. Motte I. Hue P. Huijser W. Lönnig H. Saedler H. Sommer Z. Schwarz-Sommer (1992) ArticleTitleGLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis EMBO J 11 4693–4704

    Google Scholar 

  • A.J. Tunen Particlevan W. Eikelboom G.C. Angenent (1993) ArticleTitleFloral organogenesis in Tulipa Flowering Newsl 16 33–37

    Google Scholar 

  • D. Weigel E.M. Meyerowitz (1994) ArticleTitleThe ABCs of floral homeotic genes Cell 78 203–209

    Google Scholar 

  • M.D. Wilkinson G.W. Haughn (1995) ArticleTitleUNUSUAL FLORAL ORGANS controls meristem identity and organ primordial fate in Arabidopsis Plant Cell 7 1485–1499

    Google Scholar 

  • K.U. Winter C. Weiser K. Kaufmann A. Bohne C. Kirchner A. Kanno H. Saedler G. Theissen (2002) ArticleTitleEvolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization Mol. Biol. Evol 19 587–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Fukuda, T., Nakano, M. et al. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58, 435–445 (2005). https://doi.org/10.1007/s11103-005-5218-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-5218-z

Keywords

Navigation