Skip to main content
Log in

Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The cytosolic class I small heat shock proteins (sHSP-CI) represent the most abundant sHSP in plants. Here, we report the characterization and the expression profile of nine members of the sHSP-CI gene family in rice (Oryza sativa Tainung No.67), of which Oshsp16.9A, Oshsp16.9B, Oshsp16.9C, Oshsp16.9D and Oshsp17.9B are clustered on chromosome 1, and Oshsp17.3, Oshsp17.7, Oshsp17.9A and Oshsp18.0 are clustered on chromosome 3. Oshsp17.3 and Oshsp18.0 are linked by a 356-bp putative bi-directional promoter. Individual gene products were identified from the protein subunits of a heat shock complex (HSC) and from in vitro transcription/ translation products by two-dimensional gel electrophoreses (2-DE). All sHSP-CI genes except Oshsp17.9B were induced strongly after a 2-h heat shock treatment. The genes on chromosome 3 were induced rapidly at 32  and 41 °C, whereas those on chromosome 1 were induced slowly by similar conditions. Seven of these genes, except Oshsp16.9D and Oshsp17.9B, were induced by arsenite (As), but only genes on chromosome 3 were strongly induced by azetidine-2-carboxylic acid (Aze, a proline analog) and cadmium (Cd). A similar expression profile of all sHSP-CI genes at a lower level was evoked by ethanol, H2O2 and CuCl2 treatments. Transient expression assays of the promoter activity by linking to GUS reporter gene also supported the in vivo selective expression of the sHSP-CI genes by Aze treatment indicating the differential induction of rice sHSP-CI genes is most likely regulated at the transcriptional level. Only Oshsp16.9A abundantly accumulated in mature dry seed also suggested additionally prominent roles played by this HSP in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACD:

α-crystallin domain

As:

arsenite

Aze:

L-azetidine-2-carboxlyic acid

Cd:

cadmium

GUS:

β-glucuronidase

HSC:

heat shock complex

HSE:

heat shock response element

ROS:

reactive oxygen species

sHSP:

small heat shock protein

sHSP-CI:

class I small heat shock protein

2-DE:

two-dimensional gel electrophoresis

References

  • G. Agrawal R. Rakwal H. Iwahashi (2002) ArticleTitleIsolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues Biochem .Biophys. Res. Commun. 294 1009–1016

    Google Scholar 

  • C. Almoguera P. Prieto-Dapena J. Jordano (1998) ArticleTitleDual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements Plant J. 13 437–446

    Google Scholar 

  • C. Almoguera A. Rojas J. Díaz-Martín P. Prieto-Dapena R. Carranco J. Jordano (2002) ArticleTitleA seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower J. Biol. Chem. 277 43866–43872

    Google Scholar 

  • N. Banzet C. Richaud Y. Deveaux M. Kazmaier J. Gagnon C. Triantaphylidès (1998) ArticleTitleAccumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells Plant J. 13 519–527

    Google Scholar 

  • P.F.L. Chang C.I. Huang F.C. Chang T.S. Tseng W.C. Lin C.Y. Lin (2001) ArticleTitleIsolation and characterization of the third gene encoding a 16.9 kDa class I low-molecular-mass heat shock protein, Oshsp16.9C, in rice Bot. Bul. Acad. Sin. 42 85–92

    Google Scholar 

  • Y.H. Cheong H.S. Chang R. Gupta X. Wang T. Zhu S. Luan (2002) ArticleTitleTranscriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis Plant Physiol. 129 661–677

    Google Scholar 

  • R. Desikan S.A.H. Mackerness J.T. Hancock S.J. Neill (2001) ArticleTitleRegulation of the Arabidopsis transcriptome by oxidative stress Plant Physiol. 127 159–172

    Google Scholar 

  • L. Edelman E. Czarnecka J.L. Key (1988) ArticleTitleInduction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments Plant Physiol. 86 1048–1056

    Google Scholar 

  • J.C. Guan X.H. Li Q.F. Zhang G. Kochert C.Y. Lin (2003) ArticleTitleCharacterization of a unique genomic clone located 5′ upstream of the Oshsp16.9B gene on chromosome 1 in rice (Oryza sativa L cv Tainung No.67). Theor. Appl. Genet. 106 503–511

    Google Scholar 

  • M. Haslbeck N. Braun T. Stromer B. Richter N. Model S. Weinkaul J. Buchner (2004) ArticleTitleHsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae EMBO J. 23 638–649

    Google Scholar 

  • H. He F. Sonicn N. Grammatikakis Y. Li A. Siganou J. Gong S.A. Brown R.E. Kingston S.K. Calderwood (2003) ArticleTitleElevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress J. Biol. Chem. 278 35465–35475

    Google Scholar 

  • S.K. Hong E. Vierling (2000) ArticleTitleMutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress Proc. Natl. Acad. Sci. USA 97 4392–4397

    Google Scholar 

  • M.S. Hsieh J.T. Chen T.L. Jinn Y.M. Chen C.Y. Lin (1992) ArticleTitleA class of soybean low molecular weight heat shock proteins Plant Physiol. 99 1279–1284

    Google Scholar 

  • T.L. Jinn Y.M. Chen C.Y. Lin (1995) ArticleTitleCharacterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean Plant Physiol. 108 693–701

    Google Scholar 

  • A. Jofré M. Molinas M. Pla (2003) ArticleTitleA 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217 813–819

    Google Scholar 

  • J.L. Key C.Y. Lin Y.M. Chen (1981) ArticleTitleHeat shock proteins of higher plants Proc. Natl. Acad. Sci. USA 78 3526–3530

    Google Scholar 

  • S. Kotak M. Port A. Ganguli F. Bicker P. von Koskull-Doring (2004) ArticleTitleCharacterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization Plant J. 39 98–112

    Google Scholar 

  • Y. Kovtun W.L. Chiu G. Tena J. Sheen (2000) ArticleTitleFunctional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants Proc. Natl. Acad. Sci. USA 97 2940–2945

    Google Scholar 

  • H.F. Kuo Y.F. Tsai L.S. Young C.Y. Lin (2000) ArticleTitleEthanol treatment triggers a heat shock-like response but no thermotolerance in soybean (Glycine max cv Kaohsiung No.8) seedlings. Plant Cell Environ. 23 1099–1108

    Google Scholar 

  • Y.L. Lee P.F.L. Chang K.W. Yeh T.L. Jinn C.C.S. Kung W.C. Lin Y.M. Chen C.Y. Lin (1995) ArticleTitleCloning and characterization of a cDNA encoding an 18.0-kDa class-I low-molecular-weight heat-shock protein from rice Gene 165 223–227

    Google Scholar 

  • Y.R.J. Lee R.T. Nagao C.Y. Lin J.L. Key (1996) ArticleTitleInduction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlings Plant Physiol. 110 241–248

    Google Scholar 

  • B.H. Lee S.H. Won H.S. Lee M. Miyao W.I. Chung I.J. Kim J. Jo (2000) ArticleTitleExpression of the chloroplast-localized small heat shock protein by oxidative stress in rice Gene 245 283–290

    Google Scholar 

  • B. Li H.T. Liu D.Y. Sun R.G. Zhou (2004) ArticleTitleCa2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro Plant Cell Physiol. 45 627–634

    Google Scholar 

  • C.Y. Lin J.K. Roberts J.L. Key (1984) ArticleTitleAcquisition of thermotolerance in soybean seedlings 1 Synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol. 74 152–160

    Google Scholar 

  • H.T. Liu B. Li Z.L. Shang X.Z. Li R.L. Mu D.Y. Sun R.G. Zhou (2003) ArticleTitleCalmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 132 1186–1195

    Google Scholar 

  • C. Lohmann G. Eggers-Schumacher M. Wunderlich F. Schöffl (2004) ArticleTitleTwo different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis Mol. Gen. Genom. 271 11–21

    Google Scholar 

  • O. Lubaretz U. zur Nieden (2002) ArticleTitleAccumulation of plant small heat-stress proteins in storage organs Planta 215 220–228

    Google Scholar 

  • E. Maestri N. Klueva C. Perrotta M. Gulli H.T. Nguyen N. Marmiroli (2002) ArticleTitleMolecular genetics of heat tolerance and heat shock proteins in cereals Plant Mol. Biol. 48 667–681

    Google Scholar 

  • M.K. Malik J.P. Slovin C.H. Hwang J.L. Zimmerman (1999) ArticleTitleModified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance Plant J. 20 89–99

    Google Scholar 

  • H. Nakamoto N. Susuki S.K. Roy (2000) ArticleTitleConstitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria FEBS Lett. 483 169–174

    Google Scholar 

  • L. Nover K. Bharti P. Doring S.K. Mishra A. Ganguli K.D. Scharf (2001) ArticleTitleArabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need Cell Stress Chaperon. 6 177–189

    Google Scholar 

  • I.I. Panchuk R.A. Volkov F. Schöffl (2002) ArticleTitleHeat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis Plant Physiol. 129 838–853

    Google Scholar 

  • N. Plesofsky-Vig R. Brambl (1995) ArticleTitleDisruption of the gene for hsp30, an α-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotolerance Proc. Natl. Acad. Sci. USA 92 5032–5036

    Google Scholar 

  • M.C. Rentel D. Lecourieux F. Ouaked S. Usher L. Petersen H. Okamoto H. Knight S.C. Peck C. Grierson H. Hirt M.R. Knight (2004) ArticleTitleOXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis Nature 427 858–861

    Google Scholar 

  • A. Rojas C. Almoguera R. Carranco K.D. Scharf J. Jordano (2002) ArticleTitleSelective activation of the developmentally regulated Hahsp17.6 G1 promoter by heat stress transcription factors Plant Physiol. 129 1207–1215

    Google Scholar 

  • A. Sabehat S. Lurie D. Weiss (1998) ArticleTitleExpression of small heat-shock proteins at low temperatures Plant Physiol. 117 651–658

    Google Scholar 

  • K. Sanmiya K. Suzuki Y. Egawa M. Shono (2004) ArticleTitleMitochondrial small heat-shock protein enhances thermotolerance in tobacco plants FEBS Lett. 557 265–268

    Google Scholar 

  • K.D. Scharf M. Siddique E. Vierling (2001) ArticleTitleThe expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing crystalline domains (Acd proteins) Cell Stress Chaperon. 6 225–237

    Google Scholar 

  • F. Schöffl R. Prändl A. Reindl (1998) ArticleTitleRegulation of the heat-shock response Plant Physiol. 117 1135–1141

    Google Scholar 

  • Q.X. Shen P.N. Zhang T.H.D. Ho (1996) ArticleTitleModular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley Plant Cell 8 1107–1119 Occurrence Handle10.1105/tpc.8.7.1107 Occurrence Handle1:CAS:528:DyaK28XksFKkur8%3D Occurrence Handle8768371

    Article  CAS  PubMed  Google Scholar 

  • H.X. Shou P. Bordallo J.B. Fan J.M. Yeakley M. Bibikova J. Sheen K. Wang (2004) ArticleTitleExpression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize Proc. Natl. Acad. Sci. USA 101 3298–3303

    Google Scholar 

  • S. Storozhenko P.D. Pauw M. Van Montagu D. Inze S. Kushnir (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter Plant Physiol. 118–1005

    Google Scholar 

  • D.Y. Sung E. Vierling C.L. Guy (2001) ArticleTitleComprehensive expression profile analysis of the Arabidopsis Hsp70 gene family Plant Physiol. 126 798–800

    Google Scholar 

  • D.Y. Sung F. Kaplan K.J. Lee C.L. Guy (2003) ArticleTitleAcquired tolerance to temperature extremes Trends Plant Sci. 8 179–187

    Google Scholar 

  • T.S. Tseng S.S. Tzeng K.W. Yeh C.H. Yeh F.C. Chang Y.M. Chen C.Y. Lin (1993) ArticleTitleThe heat-shock response in rice seedlings: isolation and expression of cDNAs that encode class I low-molecular-weight heat-shock proteins Plant Cell Physiol. 34 165–168

    Google Scholar 

  • S.S. Tzeng Y.M. Chen C.Y. Lin (1993) ArticleTitleIsolation and characterization of genes encoding 16.9 kD heat shock proteins in Oryza sativa Bot. Bull. Acad. Sin. 34 133–142

    Google Scholar 

  • R.L.M. van Montfort E. Basha K.L. Friedrich C. Slingsby E. Vierling (2001) ArticleTitleCrystal structure and assembly of a eukaryotic small heat shock protein Nat. Struct. Biol. 8 1025–1030

    Google Scholar 

  • W.X. Wang B. Vinocur A. Altman (2003) ArticleTitlePlant response to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance Planta 218 1–14 Occurrence Handle10.1007/s00425-003-1105-5 Occurrence Handle1:CAS:528:DC%2BD3sXovV2ltbo%3D Occurrence Handle14513379

    Article  CAS  PubMed  Google Scholar 

  • N. Wehmeyer E. Vierling (2000) ArticleTitleThe expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests general protective role in desiccation tolerance Plant Physiol. 122 1099–1108

    Google Scholar 

  • C.H. Yeh K.W. Yeh S.H. Wu P.F.L. Chang Y.M. Chen C.Y. Lin (1995) ArticleTitleA recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro Plant Cell Physiol. 36 1341–1348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Yung Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, JC., Jinn, TL., Yeh, CH. et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56, 795–809 (2004). https://doi.org/10.1007/s11103-004-5182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-5182-z

Keywords

Navigation