Skip to main content
Log in

Transcript profiling of transcription factor genes during silique development in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Flower development is a key process for all angiosperms and is essential for sexual reproduction. The last phase in flower development is fertilization of the ovules and formation of the fruits, which are both biologically and economically of importance. Here, we report the expression profiles of over 1100 unique Arabidopsis genes coding for known and putative transcription factors (TFs) during silique development using high-density filter array hybridizations. Hierarchical cluster analyses revealed distinct expression profiles for the different silique developmental stages. This allowed a functional classification of these expression profiles in groups, namely pistil development, embryogenesis, seed maturation, fruit maturation, and fruit development. A further focus was made on the MADS-box family, which contains many members that are functionally well-characterized. The expression profiles of these MADS-box genes during silique development give additional clues on their functions and evolutionary relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida, M., Ishida, T. and Tasaka, M. 1999. Shoot apicalmeristem and cotyledon formation during Arabidopsisembryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563–1570.

    PubMed  CAS  Google Scholar 

  • Altschul, S. F. Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. and Lipman, D. J. 1997. GappedBLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acid Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  • Alvarez Buylla, E. R., Liljegren, S. J., Pelaz, S., Gold, S. E., Burgeff, C., Ditta, G. S., Vergara Silva, F. and Yanofsky, M. F., 2000a. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots andtrichomes. Plant J. 24: 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez Buylla, E. R., Pelaz, S., Liljegren, S. J., Gold, S. E., Burgeff, C., Ditta, G. S., de Pouplana, L. R., MartinezCastilla, L. and Yanofsky, M. F. 2000b. An ancestralMADS-box gene duplication occurred before the divergence of plants and animals. Proc. Nat. Acad. Sci. USA 97: 5328–5333.

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative. 2000. Analysis of the genomesequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Baker, S. C., Robinson Beers, K., Villanueva, J. M., Gaiser, J. C. and Gasser, C. S. 1997 Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145: 1109–1124.

    PubMed  CAS  Google Scholar 

  • Birnbaum, K., Shasha, D. E., Wang, J. Y., Jung, J. W, Lambert, G. M., Galbraith, D. W. and Benfey, P. N. 2003. A gene expression map of the Arabidopsis root. Science 302: 1956–1960.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. L. 1994 Arabidopsis: An Atlas of Morphology and Development. Springer-Verlag, New York.

    Google Scholar 

  • Chaudhury, A. M., Craig, S., Dennis, E. S. and Peacock, W. J. 1998. Ovule and embryo development, apomixis and fertilization. Curr. Opin. Plant. Biol. 1: 26–31.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E. S., Meyerowitz, E. M. 1991 The war of the whorls: genetic interactions controlling flower development. Nature353: 31–37.

  • Colombo, L., Franken, J., Van der Krol, A. R., Wittich, P. E., Dons, H. and Angenent, G. C. 1997. Down regulation of ovule-specific MADS box genes from petunia results inmaternally controlled defects in seed development. Plant Cell9: 703–715.

    Article  PubMed  CAS  Google Scholar 

  • Czechowski, T., Bari, R. P., Stitt, M., Scheible, W. R. and Udvardi, M. K. 2004. Real-time RT-PCR profiling of over1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and shoot-specific genes. Plant J. 38: 366—379.

    Article  PubMed  Google Scholar 

  • Eddy, S. R. 1998 Profile hidden Markov models. Bioinformatics14: 755–763.

    Article  PubMed  CAS  Google Scholar 

  • Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi. L., Ditta, G., Yanofsky. M. F., Kater, M. M. and Colombo, L. 2003. MADS-Box protein complexes control carpeland ovule development in Arabidopsis. Plant Cell 15: 2603–2611.

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz, C. 2002. Regulation of fruit dehiscence in Arabidopsis. J. Exp. Bot. 53: 2031–2038.

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R. and Yanofsky MF 2000a. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725–734.

    PubMed  CAS  Google Scholar 

  • Ferrandiz, C., Liljegren, S. J. and Yanofsky, M. F. 2000b. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science289: 436–438.

  • Ferrandiz, C, Pelaz S. and Yanofsky MF 1999. Control ofcarpel and fruit development in Arabidopsis. Ann. Rev. Biochem. 68: 321–354.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, C. S. and Robinson-Beers, K. 1993 Pistil development. Plant Cell 5: 1231–1239.

    Article  PubMed  Google Scholar 

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E. M. and Coupland, G. 1997. A polycomb-groupgene regulates homeotic gene expression in Arabidopsis. Nature 386: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., Ferrandiz, C., Yanofsky, M. F. and Martienssen, R. 1998. The FRUITFULL MADS-box gene mediates celldifferentiation during Arabidopsis fruit development. Development 125: 1509–1517.

    PubMed  CAS  Google Scholar 

  • Gustafson-Brown, C., Savidge, B. and Yanofsky, M. F. 1994. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H. and Huijser, P. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Heck, G. R., Perry, S. E., Nichols, K. W. and Fernandez, D. E. 1995. AGL15, a MADS domain protein expressed indeveloping embryos. Plant Cell 7: 1271–1282.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, L., Gruissem, W., Grossniklaus, U. and Kohler, C. 2004. Transcriptional Programs of Early ReproductiveStages in Arabidopsis. Plant Physiol. 135: 1765–1775.

    Article  PubMed  CAS  Google Scholar 

  • Honma, T. and Goto, K. 2001. Complexes of MADS-boxproteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

    Article  PubMed  CAS  Google Scholar 

  • Huala, E., Dickerman, A. W., Garcia Hernandez, M., Weems, D., Reiser, L., LaFond, F., Hanley, D., Kiphart D, Zhuang MZ, Huang W, Mueller L. A., Bhattacharyya, D., Bhaya, D., Sobral, B. W., Beavis, W., Meinke, D. W., Town, C. D., Somerville, C. and Rhee, S. Y. 2001. The ArabidopsisInformation Resource (TAIR): a comprehensive databaseand web-based information retrieval, analysis, and visualizationsystem for a model plant. Nucl. Acid Res. 29: 102–105.

    Article  CAS  Google Scholar 

  • Ito T. and Meyerowitz E. M. 2000. Overexpression of agene encoding a cytochrome P450, CYP78A9, induceslarge and seedless fruit in Arabidopsis. Plant Cell 12: 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  • Kerk, N. M., Ceserani, T., Tausta, S. L., Sussex. I. M. and Nelson, T. M. 2003. Laser capture microdissection of cellsfrom plant tissues. Plant Physiol. 132: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W. and Grossniklaus, U. 2003. The Polycomb-group protein MEDEAregulates seed development by controlling expressionof the MADS-box gene PHERES1. Genes Dev. 17: 1540–1553.

    Article  PubMed  Google Scholar 

  • Kranz, H. D., Denekamp, M., Greco, R., Jin. H., Leyva, A., Meissner, R. C., Petroni, K., Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J. and Weisshaar, B. 1998. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsisthaliana. Plant J. 16: 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Liljegren, S. J., Ditta, G. S., Eshed, H. Y., Savidge, B., Bowman, J. L. and Yanofsky, M. F. 2000. SHATTERPROOF MADS box genes control seed dispersal in Arabidopsis. Nature 404: 766–770.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. and Schiefelbein, J. 2001. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis. Development 128: 3697–3705.

    PubMed  CAS  Google Scholar 

  • Liu, C-m and Meinke D. W. 1998. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle controlduring seed development. Plant J. 16: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L. and Pereira, A. 2002. Activation tagging usingthe En-I maize transposon system in Arabidopsis. PlantPhysiol. 129: 1544–1556.

    CAS  Google Scholar 

  • Meinke, D. W., Franzmann, L. H., Nickle, T. C. and Yeung, E. C. 1994. Leafy Cotyledon mutants of Arabidopsis. PlantCell 6: 1049–1064.

    CAS  Google Scholar 

  • Michaels, S. D. and Amasino, R. M. 1999. FLOWERINGLOCUS C encodes a novel MADS domain protein thatacts as a repressor of flowering. Plant Cell 11: 949–956.

    Article  PubMed  CAS  Google Scholar 

  • Modrusan, Z., Reiser. L., Feldmann, K. A., Fischer, R. L. and Haughn, G. W. 1994. Homeotic transformation of ovulesinto carpel-like structures in Arabidopsis. Plant Cell 6: 333–349.

    Article  PubMed  CAS  Google Scholar 

  • Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L. 2000. The TT8 gene encodes a basic helixloop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12: 1863–1878.

    Article  PubMed  CAS  Google Scholar 

  • Parenicova´, L., de Folter, S., Kieffer, M., Horner, D. S., Favalli, C., Busscher, J., Cook, H. E., Ingram, R. M., Kater, M. M., Davies, B., Angenent, G. C. and Colombo, L. 2003. Molecular and phylogenetic analyses of the complete MADS-boxtranscription factor family in Arabidopsis: new openings tothe MADS world. Plant Cell 15: 1538–1551.

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J. and The REGIA Consortium. 2002. REGIA, anEU project on fuctional genomics of transcription factorsfrom Arabidopsis thaliana. Comp. Funct. Genom. 3: 102–108.

    Article  CAS  Google Scholar 

  • Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. 2000. B and C floral organ identity functions requireSEPALLATA MADS-box genes. Nature 405: 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E. and Yanofsky, M. F. 2003. Assessing the redundancy 0of MADS-box genes during carpel and ovule development. Nature 424: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, O. J., Kumimoto, R. W., Wong. B. J. and Riechmann, J. L. 2003. Analysis of the Arabidopsis MADS AFFECTINGFLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15: 1159–1169.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, O. J., Nadzan, G. C., Reuber, T. L. and Riechmann, J. L. 2001. Regulation of flowering in Arabidopsis by an FLChomologue. Plant Physiol. 126: 122–132.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J. L. 2002. Transcriptional regulation: a genomic overview. In: C. R. Somerville and E. M. Meyerowitz (Eds). The Arabidopsis Book, Vol. doi/10. 1199/tab. 0085, http: //www. aspb. org/publications/arabidopsis/. American Society of Plant Biologists, Rockville, MD.

    Google Scholar 

  • Riechmann, J. L., Heard, J., Martin, G., Reuber, L.,-Z. C., Jiang, Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K. and Yu, G.-L. 2000. Arabidopsis transcription factors: genome-wide comparativeanalysis among eukaryotes. Science 290: 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J. L. and Ratcliffe, O. J. 2000. A genomic perspectiveon plant transcription factors. Curr. Opin. Plant Biol. 3: 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Rounsley, S. D., Ditta, G. S. and Yanofsky, M. F. 1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259–1269.

    Article  PubMed  CAS  Google Scholar 

  • Sagasser, M., Lu, G. H., Hahlbrock, K. and Weisshaar, B. 2002. Arabidopsis thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev. 16: 138–149.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H., Medrano, L. J. and Meyerowitz, E. M. 1995. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, S., Watanabe, K., Goto, K., Kanaya, E., Morita, E. H. and Okada, K. 1999. FILAMENTOUS FLOWER, a meristemand organ identity gene of Arabidopsis, encodes aprotein with a zinc finger and HMG-related domains. GenesDev. 13: 1079–1088.

    CAS  Google Scholar 

  • Schnable, P. S., Hochholdinger, F. and Nakazono, M. 2004. Global expression profiling applied to plant development. Curr. Opin. Plant Biol. 7: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Schoof, H., Zaccaria, P., Gundlach, H., Lemcke, K., Rudd, S., Kolesov, G., Arnold. R., Mewes. H. W. and Mayer, K. F. X. 2002. MIPS Arabidopsis thaliana database (MAtDB): anintegrated biological knowledge resource based on the first complete plant genome. Nucl. Acid Res. 30: 91–93.

    Article  CAS  Google Scholar 

  • Scortecci, K. C., Michaels, S. D. and Amasino, R. M. 2001. Identification of a MADS-box gene, FLOWERING LOCUSM, that represses flowering. Plant J. 26: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Sessions, A. 1999. Piecing together the Arabidopsis gynoecium. Trends in Plant Sci. 4: 296–297.

    Article  Google Scholar 

  • Sessions, A., Nemhauser, J. L., McColl, A., Roe, J. L., Feldmann, K. A. and Zambryski, P. C. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development124: 4481–4491.

    PubMed  CAS  Google Scholar 

  • Shirley, B. W., Kubasek, W. L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F. M. and Goodman, H. M. 1995. Analysis of Arabidopsis mutants deficient in flavonoidbiosynthesis. Plant J. 8: 659–671.

    Article  PubMed  CAS  Google Scholar 

  • Siegfried, K. R., Eshed, Y., Baum, S. F., Otsuga, D., Drews, G. N. and Bowman, J. L. 1999. Members of the YABBY genefamily specify abaxial cell fate in Arabidopsis. Dev. 126: 4117–4128.

    CAS  Google Scholar 

  • Silverstone, A. L., Ciampaglio, C. N. and Sun, T-p. 1998. The Arabidopsis RGA gene encodes a transcriptional regulatorrepressing the gibberellin signal transduction pathway. PlantCell 10: 155–170.

    CAS  Google Scholar 

  • Smalle, J., Kurepa, J., Haegman, M., Gielen, J., Van Montagu, M. and Straeten, D. V. D. 1998. The trihelix DNA-bindingmotif in higher plants is not restricted to the transcriptionfactors GT-1 and GT-2. Proc. Nat. Acad. Sci. USA 95: 3318–3322.

    Article  PubMed  CAS  Google Scholar 

  • Takada, S., Hibara, K., Ishida, T. and Tasaka, M. 2001. TheCUP-SHAPED COTYLEDON1 gene of Arabidopsis regulatesshoot apical meristem formation. Development 128: 1127–1135.

    PubMed  CAS  Google Scholar 

  • Verwoerd, T. C., Dekker, B. M. and Hoekema, A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucl. Acid Res.: 2362.

  • Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., Blundell, T. L., Esch, J. J. and Marks, MD and Gray, J. C. 1999. The TRANSPARENT TESTA GLABRA1 Locus, which regulates trichome differentiationand anthocyanin biosynthesis in Arabidopsis, encodes aWD40 repeat protein. Plant Cell 11: 1337–1350.

    Article  PubMed  CAS  Google Scholar 

  • Wan, C. Y. and Wilkins, T. A. 1994. A modified hot boratemethod significantly enhances the yield of high-quality RNA from Cotton (Gossypium hirsutum L. ). Anal. Biochem. 223: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Wellmer, F., Riechmann. J. L., Alves-Ferreira. M. and Meyerowitz, E. M. 2004. Genome-wide analysis of spatial geneexpression in Arabidopsis flowers. Plant Cell 16: 1314–1326.

    Article  PubMed  CAS  Google Scholar 

  • West, M., Yee, K. M., Danao, J., Zimmerman, J. L., Fischer, R. L., Goldberg, R. B. and Harada, J. J. 1994. LEAFYCOTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6: 1731–1745.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A. and Meyerowitz, E. M. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. Z. 2003. Over expression analysis of plant transcription factors. Curr Opin Plant Biol 6: 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Zik, M. and Irish, V. F. 2003. Global identification of target genes regulated by APETALA3 and PISTILLATA floralhomeotic gene action. Plant Cell 15: 207–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Folter, S., Busscher, J., Colombo, L. et al. Transcript profiling of transcription factor genes during silique development in Arabidopsis . Plant Mol Biol 56, 351–366 (2004). https://doi.org/10.1007/s11103-004-3473-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3473-z

Navigation