Skip to main content
Log in

Characterization of HoMADS 1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To understand the molecular mechanism of ovule development, a MADS box gene,HoMADS 1, has been isolated from the ovule tissues of Hyacinthus. Sequence comparison showed that HoMADS 1 is highly homologous to both class C and D genes. Furthermore, phylogenetic analysis suggests that HoMADS 1 is most likely a class D MADS box gene. RNA hybridization revealed that HoMADS 1 was exclusively expressed in the ovules. Over-expressing HoMADS 1 in transgenic Arabidopsis plants produced ectopic carpelloid structures, including ovules, indicating that HoMADS 1 is involved in the determination of carpel and ovule identities. Interestingly, during in vitro flowering, no HoMADS 1 mRNA was detected in the floral tissues at high level hormones in the media. However, HoMADS 1 mRNA accumulated in the floral tissues when the regenerated flowers were transferred to the media containing low level hormones which could induce in vitro ovule formation. Our data suggest that the induction of HoMADS 1 by plant hormones may play important roles during ovule initiation and development in the regenerated flower. Whether HoMADS 1 expression is also regulated by cytokinin and auxin during ovule development in planta remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angenent, G.C., Franken, J., Busscher, M., van Djiken, A., van Went, J.L., Dons, H.J.M. and van Tunen, A.J. 1995. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569–1582.

    Article  PubMed  Google Scholar 

  • Bonhomme, F., Kurz, B., Melzer, S., Bernier, G. and Jacqmard, A. 2000. Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in the regulation of the floral transition in Sinapis alba. Plant J. 24: 103–111.

    Article  PubMed  Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85–95.

    Article  PubMed  Google Scholar 

  • Che, P., Gingerich, D.J., Lall, S. and Howell, S.H. 2002. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14: 2771–2785.

    Article  PubMed  Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.

    Article  PubMed  Google Scholar 

  • Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C. and van Tunen, A.J. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859–1868.

    Article  PubMed  Google Scholar 

  • Drews, G.N., Bowman, J.L. and Meyerowitz, E.M. 1991. Negative regulation of the Arabidopsis hometic gene AGAMOUS by the APETALA2 product. Cell 65: 991–1002.

    Article  PubMed  Google Scholar 

  • Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M. and Colombo, L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603–2611.

    Article  PubMed  Google Scholar 

  • Gasser, C.S. and Robinson-Beers, K. 1993. Pistil development. Plant Cell 5: 1231–1239.

    Article  PubMed  Google Scholar 

  • Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masireo, S., Van Lookeren Campagne, M.M. and Angenent, G.C. 1998. Multiple AGAMOUS homologs from cucumer and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10: 171–182.

    Article  PubMed  Google Scholar 

  • Kempin, S.A., Mandel, M.A. and Yanofsky, M.F. 1993. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol. 103: 1041–1046.

    Article  PubMed  Google Scholar 

  • Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P. and Schell, J. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.

    PubMed  Google Scholar 

  • Li, Q.Z., Li, X.G., Bai, S.N., Lu, W.L. and Zhang, X.S. 2002. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215: 533–540.

    Article  PubMed  Google Scholar 

  • Lopez-Dee, Z.P., Wittich, P., Enrico Pe, M., Rigola, D., Del Buono, I., Gorla, M.S., Kater, M.M. and Columbo, L. 1999. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25: 237–244.

    Article  PubMed  Google Scholar 

  • Lu, W.L. and Zhu, Y.J. 1991. Cytological observations on microsporogenesis and pollen development of regenerated stamen in Hyacinthus. Acta Botan. Sin. 33: 343–349.

    Google Scholar 

  • Lu, W.L., Bai, S.N. and Zhang, X.S. 1999. Induction of continuous tepal differentiation from in vitro regenerated flower buds of Hyacinthus orientalis L. Acta Botan. Sin. 41: 921–926.

    Google Scholar 

  • Lu, W.L., Bai, S.N. and Zhang, X.S. 2000. The exogenous hormonal control of the development of regenerated flower buds in Hyacinthus orientalis L. Acta Botan. Sin. 42: 996–1002.

    Google Scholar 

  • Lu, W.L., Enomoto, K., Fukunaga, Y. and Kuo, C. 1988. Regeneration of tepals, stamans and ovules in explants from perianth of Hyacinthus orientalis L. Planta 175: 478–484.

    Article  Google Scholar 

  • Mizukami, Y. and Ma, H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119–131.

    Article  PubMed  Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacoo cultures. Physiol. Plant 15: 473–497.

    Google Scholar 

  • O'Neill, S.D., Nadeau, J.A., Zhang, X.S., Bui, A.Q. and Halevy, A.H. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419–432.

    Article  PubMed  Google Scholar 

  • Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. 2003. Assessing the redundance of MADS-box genes during carpel and ovule development. Nature 424: 85–88.

    Article  PubMed  Google Scholar 

  • Pnueli, L., Harevan, D., Rounsley, S.D., Yanofsky, M.F. and Lifschitz, E. 1994. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–173.

    Article  PubMed  Google Scholar 

  • Reiser, L. and Fischer, R.L. 1993. The ovule and the embryo sac. Plant Cell 5: 1291–1301.

    Article  PubMed  Google Scholar 

  • Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. 1995. Diverse roles for MADS Box genes in Arabidopsis development. Plant Cell 7: 1259–1269.

    Article  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T.M. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Savidge, B., Rounsley, S.D. and Yanofsky, M.F. 1995. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721–733.

    Article  PubMed  Google Scholar 

  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115–149.

    Article  PubMed  Google Scholar 

  • Tzeng, T.Y., Chen, H.Y. and Yang, C.H. 2002. Ectopic expression of carpel-specific MADS Box genes from Lily and Lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol. 130: 1827–1836.

    Article  PubMed  Google Scholar 

  • Yanofsky, M.K., Ma, H., Bowman, J.L., Drew, G., Feldmann, K.A. and Meyerowitz, E.M. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346: 35–39.

    Article  PubMed  Google Scholar 

  • Zhang, X.S. and O'Neill, S.D. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5: 403–418.

    Article  PubMed  Google Scholar 

  • Zhang, X.S., Li, Q.Z., Li, X.G. and Xu, H.Y. 2000. Regulation of homeotic gene expression in the regenerated flowers of Hyacinthus orientalis. The Annual Meeting of the Plant Physiologists in San Diego, California USA, Plant Biology 2000, Abstract 80.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Li, X., Li, Q. et al. Characterization of HoMADS 1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L.. Plant Mol Biol 55, 209–220 (2004). https://doi.org/10.1007/s11103-004-0181-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0181-7

Navigation