Skip to main content

Advertisement

Log in

Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Growth hormone (GH) has an important role in intestinal barrier function, and abnormalities in GH action have been associated with intestinal complications. Yet, the impact of altered GH on intestinal gross anatomy and morphology remains unclear.

Methods

This study investigated the influence of GH signaling on gross anatomy, morphology, and fibrosis by characterizing the small and large intestines in male and female bovine growth hormone transgenic (bGH) mice and GH receptor gene-disrupted (GHR−/−) mice at multiple timepoints.

Results

The length, weight, and circumference of the small and large intestines were increased in bGH mice and decreased in GHR−/− mice across all ages. Colon circumference was significantly increased in bGH mice in a sex-dependent manner while significantly decreased in male GHR−/− mice. Villus height, crypt depth, and muscle thickness of the small intestine were generally increased in bGH mice and decreased in GHR−/− mice compared to controls with age- and sex-dependent exceptions. Colonic crypt depth and muscle thickness in bGH and GHR−/− mice were significantly altered in an age- and sex-dependent manner. Fibrosis was increased in the small intestine of bGH males at 4 months of age, but no significant differences were seen between genotypes at other timepoints.

Conclusion

This study observed notable opposing findings in the intestinal phenotype between mouse lines with GH action positively associated with intestinal gross anatomy (i.e. length, weight, and circumference). Moreover, GH action appears to alter morphology of the small and large intestines in an age- and sex-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Upon request.

Code availability

Upon request.

Abbreviations

bGH:

Bovine growth hormone transgenic mice

GHR−/−:

Growth hormone receptor gene disrupted mice

SI:

Small intestines

LI:

Large intestines

IBD:

Inflammatory bowel disease

References

  1. Kaymakci A, Guven S, Ciftci I, Akillioglu I, Aktan M, Eker HH, Sutcu A, Abasiyanik A (2014) Protective effects of growth hormone on bacterial translocation and intestinal damage in rats with partial intestinal obstruction. Bratisl Med J 115(07):395–399. https://doi.org/10.4149/bll_2014_078

    Article  CAS  Google Scholar 

  2. Scopa CD, Koureleas S, Tsamandas AC, Spiliopoulou I, Alexandrides T, Filos KS, Vagianos CE (2000) Beneficial effects of growth hormone and insulin-like growth factor I on intestinal bacterial translocation, endotoxemia, and apoptosis in experimentally jaundiced rats. J Am Coll Surg 190(4):423–431. https://doi.org/10.1016/s1072-7515(99)00285-9

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Tseng SH, Yao CL, Li C, Tsai YH (2018) Distinct effects of growth hormone and glutamine on activation of intestinal stem cells. J Parenter Enteral Nutr 42(3):642–651. https://doi.org/10.1177/0148607117709435

    Article  CAS  Google Scholar 

  4. Bogazzi F, Ultimieri F, Raggi F, Russo D, Lombardi M, Cosci C, Brogioni S, Gasperi M, Bartalena L, Martino E (2009) Reduced colonic apoptosis in mice overexpressing bovine growth hormone occurs through changes in several kinase pathways. Growth Horm IGF Res 19(5):432–441. https://doi.org/10.1016/j.ghir.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Chesnokova V, Zonis S, Barrett RJ, Gleeson JP, Melmed S (2019) Growth hormone induces colon DNA damage independent of IGF-1. Endocrinology 160(6):1439–1447. https://doi.org/10.1210/en.2019-00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chesnokova V, Zonis S, Zhou C, Recouvreux MV, Ben-Shlomo A, Araki T, Barrett R, Workman M, Wawrowsky K, Ljubimov VA, Uhart M, Melmed S (2016) Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci USA 113(23):E3250-3259. https://doi.org/10.1073/pnas.1600561113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cats A, Dullaart RP, Kleibeuker JH, Kuipers F, Sluiter WJ, Hardonk MJ, de Vries EG (1996) Increased epithelial cell proliferation in the colon of patients with acromegaly. Cancer Res 56(3):523–526

    CAS  PubMed  Google Scholar 

  8. Pereira-Fantini PM, Thomas SL, Taylor RG, Nagy E, Sourial M, Fuller PJ, Bines JE (2008) Colostrum supplementation restores insulin-like growth factor-1 levels and alters muscle morphology following massive small bowel resection. J Parenter Enteral Nutr 32(3):266–275. https://doi.org/10.1177/0148607108316197

    Article  CAS  Google Scholar 

  9. Garcia-Arnes J, Sierra C, Tinahones F, Monzon A, Lopez MJ, Mazuecos N, Soriguer F, Valverde E (2001) Intestinal permeability in adult patients with growth hormone deficiency. J Endocrinol Invest 24(2):78–82. https://doi.org/10.1007/BF03343817

    Article  CAS  PubMed  Google Scholar 

  10. Soendergaard C, Kvist PH, Thygesen P, Reslow M, Nielsen OH, Kopchick JJ, Holm TL (2017) Characterization of growth hormone resistance in experimental and ulcerative colitis. Int J Mol Sci 18(10):2046. https://doi.org/10.3390/ijms18102046

    Article  CAS  PubMed Central  Google Scholar 

  11. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR (2013) Colitis induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis 19(8):1586–1597. https://doi.org/10.1097/MIB.0b013e318289e17b

    Article  PubMed  Google Scholar 

  12. Lahad A, Weiss B (2015) Current therapy of pediatric Crohn’s disease. World J Gastrointest Pathophysiol 6(2):33–42. https://doi.org/10.4291/wjgp.v6.i2.33

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han X, Ren X, Jurickova I, Groschwitz K, Pasternak BA, Xu H, Wilson TA, Hogan SP, Denson LA (2009) Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut 58(1):49–58. https://doi.org/10.1136/gut.2007.145094

    Article  CAS  PubMed  Google Scholar 

  14. Walker MD, Zylberberg HM, Green PHR, Katz MS (2019) Endocrine complications of celiac disease: a case report and review of the literature. Endocr Res 44(1–2):27–45. https://doi.org/10.1080/07435800.2018.1509868

    Article  CAS  PubMed  Google Scholar 

  15. Resmini E, Parodi A, Savarino V, Greco A, Rebora A, Minuto F, Ferone D (2007) Evidence of prolonged orocecal transit time and small intestinal bacterial overgrowth in acromegalic patients. J Clin Endocrinol Metab 92(6):2119–2124. https://doi.org/10.1210/jc.2006-2509

    Article  CAS  PubMed  Google Scholar 

  16. Wassenaar MJ, Cazemier M, Biermasz NR, Pereira AM, Roelfsema F, Smit JW, Hommes DW, Felt-Bersma RJ, Romijn JA (2010) Acromegaly is associated with an increased prevalence of colonic diverticula: a case-control study. J Clin Endocrinol Metab 95(5):2073–2079. https://doi.org/10.1210/jc.2009-1714

    Article  CAS  PubMed  Google Scholar 

  17. Colao A, Balzano A, Ferone D, Panza N, Grande G, Marzullo P, Bove A, Iodice G, Merola B, Lombardi G (1997) Increased prevalence of colonic polyps and altered lymphocyte subset pattern in the colonic lamina propria in acromegaly. Clin Endocrinol (Oxf) 47(1):23–28. https://doi.org/10.1046/j.1365-2265.1997.00253.x

    Article  CAS  Google Scholar 

  18. Thomas LA, Veysey MJ, Murphy GM, Russell-Jones D, French GL, Wass JA, Dowling RH (2005) Octreotide induced prolongation of colonic transit increases faecal anaerobic bacteria, bile acid metabolising enzymes, and serum deoxycholic acid in patients with acromegaly. Gut 54(5):630–635. https://doi.org/10.1136/gut.2003.028431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon MB, Nakhle S, Ludlam WH (2016) Patients with acromegaly presenting with colon cancer: a case series. Case Rep Endocrinol. https://doi.org/10.1155/2016/5156295

    Article  PubMed  PubMed Central  Google Scholar 

  20. McFadden JP, Corrall RJ (1987) Sigmoid volvulus in acromegaly. CMAJ 136(10):1060

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Simsek Z, Uskudar O, Deveci M, Aktas B (2012) Acute colonic pseudo-obstruction in acromegalic patient with dolicho-megacolon mimicking colonic volvulus. Turk J Gastroenterol 23(3):307–308

    Article  Google Scholar 

  22. Hancerliogullari O, Senocak R, Kaymak S, Lapsekili E, Sinan H (2018) An uncommon cause of acute abdomen in an acromegalic patient: colonic volvulus. Ann Ital Chir 89:572–576

    PubMed  Google Scholar 

  23. Jara A, Benner CM, Sim D, Liu X, List EO, Householder LA, Berryman DE, Kopchick JJ (2014) Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology 155(3):975–986. https://doi.org/10.1210/en.2013-1899

    Article  CAS  PubMed  Google Scholar 

  24. Householder LA, Comisford R, Duran-Ortiz S, Lee K, Troike K, Wilson C, Jara A, Harberson M, List EO, Kopchick JJ, Berryman DE (2018) Increased fibrosis: a novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 39:45–53. https://doi.org/10.1016/j.ghir.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  25. Pendergrass WR, Li Y, Jiang D, Wolf NS (1993) Decrease in cellular replicative potential in “giant” mice transfected with the bovine growth hormone gene correlates to shortened life span. J Cell Physiol 156(1):96–103. https://doi.org/10.1002/jcp.1041560114

    Article  CAS  PubMed  Google Scholar 

  26. Palmer AJ, Chung MY, List EO, Walker J, Okada S, Kopchick JJ, Berryman DE (2009) Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 150(3):1353–1360. https://doi.org/10.1210/en.2008-1199

    Article  CAS  PubMed  Google Scholar 

  27. Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G, Wanke R (1993) Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev 68(1–3):71–87. https://doi.org/10.1016/0047-6374(93)90141-d

    Article  CAS  PubMed  Google Scholar 

  28. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144(9):3799–3810. https://doi.org/10.1210/en.2003-0374

    Article  CAS  PubMed  Google Scholar 

  29. Michaylira CZ, Ramocki NM, Simmons JG, Tanner CK, McNaughton KK, Woosley JT, Greenhalgh CJ, Lund PK (2006) Haplotype insufficiency for suppressor of cytokine signaling-2 enhances intestinal growth and promotes polyp formation in growth hormone-transgenic mice. Endocrinology 147(4):1632–1641. https://doi.org/10.1210/en.2005-1241

    Article  CAS  PubMed  Google Scholar 

  30. Ohneda K, Ulshen MH, Fuller CR, D’Ercole AJ, Lund PK (1997) Enhanced growth of small bowel in transgenic mice expressing human insulin-like growth factor I. Gastroenterology 112(2):444–454. https://doi.org/10.1053/gast.1997.v112.pm9024298

    Article  CAS  PubMed  Google Scholar 

  31. Williams KL, Fuller CR, Dieleman LA, DaCosta CM, Haldeman KM, Sartor RB, Lund PK (2001) Enhanced survival and mucosal repair after dextran sodium sulfate–induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology 120(4):925–937. https://doi.org/10.1053/gast.2001.22470

    Article  CAS  PubMed  Google Scholar 

  32. Jensen EA, Young JA, Jackson Z, Busken J, List EO, Carroll RK, Kopchick JJ, Murphy ER, Berryman DE (2020) Growth hormone deficiency and excess alter the gut microbiome in adult male mice. Endocrinology. https://doi.org/10.1210/endocr/bqaa026

    Article  PubMed  PubMed Central  Google Scholar 

  33. Young JA, Jensen EA, Stevens A, Duran-Ortiz S, List EO, Berryman DE, Kopchick JJ (2019) Characterization of an intestine-specific GH receptor knockout (IntGHRKO) mouse. Growth Horm IGF Res 46–47:5–15. https://doi.org/10.1016/j.ghir.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ (1997) A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA 94(24):13215–13220. https://doi.org/10.1073/pnas.94.24.13215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ (2004) Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res 14(4):309–318. https://doi.org/10.1016/j.ghir.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Bialkowska AB, Ghaleb AM, Nandan MO, Yang VW (2016) Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J Vis Exp. https://doi.org/10.3791/54161

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bedossa P, Lemaigre G, Bacci J, Martin E (1989) Quantitative estimation of the collagen content in normal and pathologic pancreas tissue. Digestion 44(1):7–13. https://doi.org/10.1159/000199886

    Article  CAS  PubMed  Google Scholar 

  38. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  39. Berryman DE, List EO, Palmer AJ, Chung MY, Wright-Piekarski J, Lubbers E, O’Connor P, Okada S, Kopchick JJ (2010) Two-year body composition analyses of long-lived GHR null mice. J Gerontol A 65(1):31–40. https://doi.org/10.1093/gerona/glp175

    Article  CAS  Google Scholar 

  40. Guo M, Li Y, Li J (2013) Effect of growth hormone, glutamine, and enteral nutrition on intestinal adaptation in patients with short bowel syndrome. Turk J Gastroenterol 24(6):463–468. https://doi.org/10.4318/tjg.2013.0555

    Article  PubMed  Google Scholar 

  41. Goulet O, Dabbas-Tyan M, Talbotec C, Kapel N, Rosilio M, Souberbielle JC, Corriol O, Ricour C, Colomb V (2010) Effect of recombinant human growth hormone on intestinal absorption and body composition in children with short bowel syndrome. J Parenter Enteral Nutr 34(5):513–520. https://doi.org/10.1177/0148607110362585

    Article  CAS  Google Scholar 

  42. Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW (1995) A new treatment for patients with short-bowel syndrome: growth hormone, glutamine, and a modified diet. Ann Surg 222(3):243–255

    Article  CAS  Google Scholar 

  43. Slonim AE, Bulone L, Damore MB, Goldberg T, Wingertzahn MA, McKinley MJ (2000) A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med 342(22):1633–1637. https://doi.org/10.1056/nejm200006013422203

    Article  CAS  PubMed  Google Scholar 

  44. Vortia E, Kay M, Wyllie R (2011) The role of growth hormone and insulin-like growth factor-1 in Crohn’s disease: implications for therapeutic use of human growth hormone in pediatric patients. Curr Opin Pediatr 23(5):545–551. https://doi.org/10.1097/MOP.0b013e32834a7810

    Article  CAS  PubMed  Google Scholar 

  45. Renehan AG, Painter JE, Bell GD, Rowland RS, O’Dwyer ST, Shalet SM (2005) Determination of large bowel length and loop complexity in patients with acromegaly undergoing screening colonoscopy. Clin Endocrinol (Oxf) 62(3):323–330. https://doi.org/10.1111/j.1365-2265.2005.02217.x

    Article  Google Scholar 

  46. Veysey MJ, Thomas LA, Mallet AI, Jenkins PJ, Besser GM, Wass JA, Murphy GM, Dowling RH (1999) Prolonged large bowel transit increases serum deoxycholic acid: a risk factor for octreotide induced gallstones. Gut 44(5):675–681. https://doi.org/10.1136/gut.44.5.675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dworakowska D, Gueorguiev M, Kelly P, Monson JP, Besser GM, Chew SL, Akker SA, Drake WM, Fairclough PD, Grossman AB, Jenkins PJ (2010) Repeated colonoscopic screening of patients with acromegaly: 15-year experience identifies those at risk of new colonic neoplasia and allows for effective screening guidelines. Eur J Endocrinol 163(1):21–28. https://doi.org/10.1530/eje-09-1080

    Article  CAS  PubMed  Google Scholar 

  48. Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE (2014) Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 386:34–45. https://doi.org/10.1016/j.mce.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Y, Song Y, Han Q, Liu W, Xu J, Yu Z, Zhang R, Li N (2018) Intestinal epithelial cell-specific IGF1 promotes the expansion of intestinal stem cells during epithelial regeneration and functions on the intestinal immune homeostasis. Am J Physiol Endocrinol Metab 315(4):E638–E649. https://doi.org/10.1152/ajpendo.00022.2018

    Article  CAS  PubMed  Google Scholar 

  50. Chen T, Zheng F, Tao J, Tan S, Zeng L, Peng X, Wu B (2015) Insulin-like growth factor-1 contributes to mucosal repair by β-Arrestin2–mediated extracellular signal-related kinase signaling in experimental colitis. Am J Pathol 185(9):2441–2453. https://doi.org/10.1016/j.ajpath.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  51. Veysey MJ, Thomas LA, Mallet AI, Jenkins PJ, Besser GM, Murphy GM, Dowling RH (2001) Colonic transit influences deoxycholic acid kinetics. Gastroenterology 121(4):812–822. https://doi.org/10.1053/gast.2001.28015

    Article  CAS  PubMed  Google Scholar 

  52. Ulshen MH, Dowling RH, Fuller CR, Zimmermann EM, Lund PK (1993) Enhanced growth of small bowel in transgenic mice overexpressing bovine growth hormone. Gastroenterology 104(4):973–980. https://doi.org/10.1016/0016-5085(93)90263-c

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Tsai YH, Tseng BJ, Tseng SH (2019) Influence of growth hormone and glutamine on intestinal stem cells: a narrative review. Nutrients. https://doi.org/10.3390/nu11081941

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barkan AL, Dimaraki EV, Jessup SK, Symons KV, Ermolenko M, Jaffe CA (2003) Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels. J Clin Endocrinol Metab 88(5):2180–2184. https://doi.org/10.1210/jc.2002-021169

    Article  CAS  PubMed  Google Scholar 

  55. Jessup SK, Dimaraki EV, Symons KV, Barkan AL (2003) Sexual dimorphism of growth hormone (GH) regulation in humans: endogenous GH-releasing hormone maintains basal GH in women but not in men. J Clin Endocrinol Metab 88(10):4776–4780. https://doi.org/10.1210/jc.2003-030246

    Article  CAS  PubMed  Google Scholar 

  56. Hindmarsh PC, Dennison E, Pincus SM, Cooper C, Fall CH, Matthews DR, Pringle PJ, Brook CG (1999) A sexually dimorphic pattern of growth hormone secretion in the elderly. J Clin Endocrinol Metab 84(8):2679–2685. https://doi.org/10.1210/jcem.84.8.5915

    Article  CAS  PubMed  Google Scholar 

  57. Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25(5):693–721. https://doi.org/10.1210/er.2003-0035

    Article  CAS  PubMed  Google Scholar 

  58. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9(6):366–376. https://doi.org/10.1038/nrendo.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Outeirino-Blanco E, Garcia-Buela J, Sangiao-Alvarellos S, Brandon I, Pena L, Pertega-Diaz S, Martinez T, Cordido F (2012) Sexual dimorphism on growth hormone secretion after oral glucose administration. Horm Metab Res 44(7):533–538. https://doi.org/10.1055/s-0032-1304578

    Article  CAS  PubMed  Google Scholar 

  60. Liu Z, Mohan S, Yakar S (2016) Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies. Growth Horm IGF Res 27:7–17. https://doi.org/10.1016/j.ghir.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  61. Hao P, Waxman DJ (2018) Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver. Endocrinology 159(3):1377–1392. https://doi.org/10.1210/en.2017-03109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bogazzi F, Ultimieri F, Raggi F, Russo D, Costa A, Marciano E, Bartalena L, Martino E (2009) Changes in the expression of suppressor of cytokine signalling (SOCS) 2 in the colonic mucosa of acromegalic patients are associated with hyperplastic polyps. Clin Endocrinol (Oxf) 70(6):898–906. https://doi.org/10.1111/j.1365-2265.2008.03431.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Julie Buckley and the Ohio University Histology Core for assistance in preparing and staining intestinal sections. We would also like to thank Alison Brittain for tissue samples at 6 weeks of age, Stephen Bell for his assistance in the dissection and adipose tissue extraction of the bGH mice and controls at all timepoints, Silvana Duran for her assistance toward tissue and body weight measurements for GHR−/− mice at 13 months of age, and Zachary Jackson for his assistance in preparing intestinal samples at 6 and 11 months of age.

Funding

This work was supported in part by NIH grant #AG059779, Ohio University Heritage College of Osteopathic Medicine, The Diabetes Institute at Ohio University, and the State of Ohio’s Eminent Scholar Program that includes a gift from Milton and Lawrence Goll. This study was partially funded by the John J. Kopchick Molecular and Cellular Biology/Translational Biomedical Sciences Research Fellowship and a fellowship from Osteopathic Heritage Foundations at Ohio University Heritage College of Osteopathic Medicine.

Author information

Authors and Affiliations

Authors

Contributions

EJ, EL, JK, and DB contributed to the study conception and design. Material preparation, data collection and analysis were performed by EJ, JY, JK, MO, and JB. The manuscript was written by EJ and JY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Darlene E. Berryman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal procedures were approved by the Ohio University Institutional Animal Care and Use Committee and complied with federal, state, and local laws.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, E.A., Young, J.A., Kuhn, J. et al. Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners. Pituitary 25, 116–130 (2022). https://doi.org/10.1007/s11102-021-01179-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-021-01179-8

Keywords

Navigation