Skip to main content
Log in

Pituitary stem cells: candidates and implications

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The pituitary is the master endocrine gland of the body. It undergoes many changes after birth, and these changes may be mediated by the differentiation of pituitary stem cells. Stem cells in any tissue source must display (1) pluripotent capacity, (2) capacity for indefinite self-renewal, and (3) a lack of specialization. Unlike neural stem cells identified in the hippocampus and subventricular zone, pituitary stem cells are not associated with one specific cell type. There are many major candidates that are thought to be potential pituitary stem cell sources. This article reviews the evidence for each of the major cell types and discuss the implications of identifying a definitive pituitary stem cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scully KM, Rosenfeld MG (2002) Pituitary development: regulatory codes in mammalian organogenesis. Science 295(5563):2231–2235. doi:10.1126/science.1062736

    Article  CAS  PubMed  Google Scholar 

  2. Carbajo-Perez E, Watanabe YG (1990) Cellular proliferation in the anterior pituitary of the rat during the postnatal period. Cell Tissue Res 261(2):333–338

    Article  CAS  PubMed  Google Scholar 

  3. Landolt AM (1973) Regeneration of the human pituitary. J Neurosurg 39(1):35–41. doi:10.3171/jns.1973.39.1.0035

    Article  CAS  PubMed  Google Scholar 

  4. Horvath E, Lloyd RV, Kovacs K (1990) Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells. A morphologic study of the rat pituitary including immunoelectron microscopy. Lab Invest 63(4):511–520

    CAS  PubMed  Google Scholar 

  5. Yoshimura F, Harumiya K, Ishikawa H, Otsuka Y (1969) Differentiation of isolated chromophobes into acidophils or basophils when transplanted into the hypophysiotrophic area of hypothalamus. Endocrinol Jpn 16(5):531–540

    Article  CAS  PubMed  Google Scholar 

  6. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    Article  CAS  PubMed  Google Scholar 

  7. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744. doi:10.1038/nature02301

    Article  CAS  PubMed  Google Scholar 

  8. Quinones-Hinojosa A, Chaichana K (2007) The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 205(2):313–324. doi:10.1016/j.expneurol.2007.03.016

    Article  PubMed  Google Scholar 

  9. Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H (2005) The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146(9):3985–3998. doi:10.1210/en.2005-0185

    Article  CAS  PubMed  Google Scholar 

  10. Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA 105(8):2907–2912. doi:10.1073/pnas.0707886105

    Article  CAS  PubMed  Google Scholar 

  11. Gleiberman AS, Michurina T, Encinas JM, Roig JL, Krasnov P, Balordi F, Fishell G, Rosenfeld MG, Enikolopov G (2008) Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci USA 105(17):6332–6337. doi:10.1073/pnas.0801644105

    Article  CAS  PubMed  Google Scholar 

  12. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112(11):1603–1618. doi:10.1172/JCI20401

    CAS  PubMed  Google Scholar 

  13. Otsuka Y, Ishikawa H, Omoto T, Takasaki Y, Yoshimura F (1971) Effect of CRF on the morphological and functional differentiation of the cultured chromophobes isolated from rat anterior pituitaries. Endocrinol Jpn 18(2):133–153

    Article  CAS  PubMed  Google Scholar 

  14. Vila-Porcile E (1972) The network of the folliculo-stellate cells and the follicles of the adenohypophysis in the rat (pars distalis). Z Zellforsch Mikrosk Anat 129(3):328–369

    Article  CAS  PubMed  Google Scholar 

  15. Salazar H (1963) The pars distalis of the female rabbit hypophysis: an electron microscopic study. Anat Rec 147:469–497

    Article  CAS  PubMed  Google Scholar 

  16. Kagayama M (1965) The follicular cell in the pars distalis of the dog pituitary gland: an electron microscope study. Endocrinology 77(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  17. Soji T, Sirasawa N, Kurono C, Yashiro T, Herbert DC (1994) Immunohistochemical study of the post-natal development of the folliculo-stellate cells in the rat anterior pituitary gland. Tissue Cell 26(1):1–8

    Article  CAS  PubMed  Google Scholar 

  18. Allaerts W, Carmeliet P, Denef C (1990) New perspectives in the function of pituitary folliculo-stellate cells. Mol Cell Endocrinol 71(2):73–81

    Article  CAS  PubMed  Google Scholar 

  19. Inoue K, Couch EF, Takano K, Ogawa S (1999) The structure and function of folliculo-stellate cells in the anterior pituitary gland. Arch Histol Cytol 62(3):205–218

    Article  CAS  PubMed  Google Scholar 

  20. Cocchia D, Miani N (1980) Immunocytochemical localization of the brain-specific S-100 protein in the pituitary gland of adult rat. J Neurocytol 9(6):771–782

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima T, Yamaguchi H, Takahashi K (1980) S100 protein in folliculostellate cells of the rat pituitary anterior lobe. Brain Res 191(2):523–531

    Article  CAS  PubMed  Google Scholar 

  22. Velasco ME, Roessmann U, Gambetti P (1982) The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 41(2):150–163

    Article  CAS  PubMed  Google Scholar 

  23. Roncaroli F, Scheithauer BW, Cenacchi G, Horvath E, Kovacs K, Lloyd RV, Abell-Aleff P, Santi M, Yates AJ (2002) ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am J Surg Pathol 26(8):1048–1055

    Article  PubMed  Google Scholar 

  24. Riss D, Jin L, Qian X, Bayliss J, Scheithauer BW, Young WF Jr, Vidal S, Kovacs K, Raz A, Lloyd RV (2003) Differential expression of galectin-3 in pituitary tumors. Cancer Res 63(9):2251–2255

    CAS  PubMed  Google Scholar 

  25. Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC (1988) Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48(4):423–431

    Article  CAS  PubMed  Google Scholar 

  26. Horvath E, Kovacs K, Penz G, Ezrin C (1974) Origin, possible function and fate of “follicular cells” in the anterior lobe of the human pituitary. Am J Pathol 77(2):199–212

    CAS  PubMed  Google Scholar 

  27. Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153(1):1–12. doi:10.1530/eje.1.01949

    Article  CAS  PubMed  Google Scholar 

  28. Vankelecom H (2007) Stem cells in the postnatal pituitary? Neuroendocrinology 85(2):110–130. doi:10.1159/000100278

    Article  CAS  PubMed  Google Scholar 

  29. Nolan LA, Levy A (2006) A population of non-luteinising hormone/non-adrenocorticotrophic hormone-positive cells in the male rat anterior pituitary responds mitotically to both gonadectomy and adrenalectomy. J Neuroendocrinol 18(9):655–661. doi:10.1111/j.1365-2826.2006.01459.x

    Article  CAS  PubMed  Google Scholar 

  30. Inoue K, Taniguchi Y, Kurosumi K (1987) Differentiation of striated muscle fibers in pituitary gland grafts transplanted beneath the kidney capsule. Arch Histol Jpn 50(5):567–578

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura F, Soji T, Sato S, Yokoyama M (1977) Development and differentiation of rat pituitary follicular cells under normal and some experimental conditions with special reference to an interpretation of renewal cell system. Endocrinol Jpn 24(5):435–449

    Article  CAS  PubMed  Google Scholar 

  32. Mogi C, Miyai S, Nishimura Y, Fukuro H, Yokoyama K, Takaki A, Inoue K (2004) Differentiation of skeletal muscle from pituitary folliculo-stellate cells and endocrine progenitor cells. Exp Cell Res 292(2):288–294

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, Maruyama D, Sugiyama M, Sakai T, Mogi C, Kato M, Kurotani R, Shirasawa N, Takaki A, Renner U, Kato Y, Inoue K (2000) Cytological characterization of a pituitary folliculo-stellate-like cell line, Tpit/F1, with special reference to adenosine triphosphate-mediated neuronal nitric oxide synthase expression and nitric oxide secretion. Endocrinology 141(10):3603–3610

    Article  CAS  PubMed  Google Scholar 

  34. Horvath E, Kovacs K (2002) Folliculo-stellate cells of the human pituitary: a type of adult stem cell? Ultrastruct Pathol 26(4):219–228. doi:10.1080/01913120290104476

    Article  PubMed  Google Scholar 

  35. Ramos CA, Venezia TA, Camargo FA, Goodell MA (2003) Techniques for the study of adult stem cells: be fruitful and multiply. Biotechniques 34(3):572–578, 580–574, 586–591

    Google Scholar 

  36. Lepore DA, Roeszler K, Wagner J, Ross SA, Bauer K, Thomas PQ (2005) Identification and enrichment of colony-forming cells from the adult murine pituitary. Exp Cell Res 308(1):166–176. doi:10.1016/j.yexcr.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  37. Lepore DA, Jokubaitis VJ, Simmons PJ, Roeszler KN, Rossi R, Bauer K, Thomas PQ (2006) A role for angiotensin-converting enzyme in the characterization, enrichment, and proliferation potential of adult murine pituitary colony-forming cells. Stem Cells 24(11):2382–2390. doi:10.1634/stemcells.2006-0085

    Article  CAS  PubMed  Google Scholar 

  38. Lepore DA, Thomas GP, Knight KR, Hussey AJ, Callahan T, Wagner J, Morrison WA, Thomas PQ (2007) Survival and differentiation of pituitary colony-forming cells in vivo. Stem Cells 25(7):1730–1736. doi:10.1634/stemcells.2007-0012

    Article  CAS  PubMed  Google Scholar 

  39. Otto C, tom Dieck S, Bauer K (1996) Dipeptide uptake by adenohypophysial folliculostellate cells. Am J Physiol 271(1 Pt 1):C210–C217

    CAS  PubMed  Google Scholar 

  40. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784. doi:10.1038/ncb0901-778

    Article  CAS  PubMed  Google Scholar 

  41. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533

    Article  CAS  PubMed  Google Scholar 

  42. Kim SY, Lee SH, Kim BM, Kim EH, Min BH, Bendayan M, Park IS (2004) Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells. Dev Dyn 230(1):1–11. doi:10.1002/dvdy.20012

    Article  CAS  PubMed  Google Scholar 

  43. Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146(5):2376–2387. doi:10.1210/en.2004-1209

    Article  CAS  PubMed  Google Scholar 

  44. Horvath E, Coire CI, Kovacs K, Smyth HS Folliculo-stellate cells of the human pituitary as adult stem cells: examples of their neoplastic potential. Ultrastruct Pathol 34(3):133–139. doi:10.3109/01913121003662247

  45. Yoshimura F, Soji T, Kiguchi Y (1977) Relationship between the follicular cells and marginal layer cells of the anterior pituitary. Endocrinol Jpn 24(3):301–305

    Article  CAS  PubMed  Google Scholar 

  46. Yoshimura F, Harumiya K, Kiyama H (1970) Light and electron microscopic studies of the cytogenesis of anterior pituitary cells in perinatal rats in reference to the development of target organs. Arch Histol Jpn 31(3):333–369

    CAS  PubMed  Google Scholar 

  47. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  48. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24(1):3–12. doi:10.1634/stemcells.2005-0116

    Article  PubMed  Google Scholar 

  49. Pevny LH, Nicolis SK Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42(3):421–424. doi:10.1016/j.biocel.2009.08.018

  50. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6(11):872–884. doi:10.1038/nrm1744

    Article  CAS  PubMed  Google Scholar 

  51. Vankelecom H (2007) Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18(4):559–570. doi:10.1016/j.semcdb.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  52. Wilson DB (1986) Distribution of 3H-thymidine in the postnatal hypophysis of the C57BL mouse. Acta Anat (Basel) 126(2):121–126

    Article  CAS  Google Scholar 

  53. Kawakami Y, Rodriguez-Leon J, Izpisua Belmonte JC (2006) The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 18(6):723–729. doi:10.1016/j.ceb.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  54. Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, Eerikainen S, Tuominen R, Lakso M, Rauvala H, Arumae U, Pasternack M, Saarma M, Airaksinen MS (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22(2):243–252

    Article  CAS  PubMed  Google Scholar 

  55. Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA (2005) Role of PROP1 in pituitary gland growth. Mol Endocrinol 19(3):698–710. doi:10.1210/me.2004-0341

    Article  CAS  PubMed  Google Scholar 

  56. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS ONE 4(3):e4815. doi:10.1371/journal.pone.0004815

    Article  PubMed  Google Scholar 

  57. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22(5):654–667. doi:10.1101/gad.451008

    Article  CAS  PubMed  Google Scholar 

  58. Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E (2008) NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132(2):299–310. doi:10.1016/j.cell.2007.11.047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Jarislowsky and Lloyd Carr-Harris Foundations for their generous support.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Nassiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassiri, F., Cusimano, M., Zuccato, J.A. et al. Pituitary stem cells: candidates and implications. Pituitary 16, 413–418 (2013). https://doi.org/10.1007/s11102-013-0470-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-013-0470-8

Keywords

Navigation