Skip to main content
Log in

Bioprospecting of plant natural products in Schleswig-Holstein (Germany) I: chemodiversity of the Cichorieae tribe (Asteraceae) in Schleswig-Holstein

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Recent international developments make access to biological resources across international borders more difficult than in the past. Local access to biological resources, including plant natural products, thus becomes more important. In order to evaluate the opportunities to access bioactive natural products in our region, we here start a series of dedicated articles assessing the chemical diversity of plant taxa, native and naturalized, in the region of Schleswig-Holstein, Germany. The region has only a limited biodiversity with about 1500 species of higher plants growing in the wild. Our aims are the following: (1) A complete review of the natural products reported from taxa occurring in Schleswig-Holstein from any part of their distribution range. (2) Proof or disproof, whether these substances are also occurring in populations of the taxa at hand occurring in the wild in Schleswig-Holstein. (3) To establish analytical GLC-MS and/or HPLC-DAD-MS systems to identify and quantify these compounds. (4) Initiation of dedicated efforts to unravel the array of secondary metabolites contained in species from the Schleswig-Holstein region not yet investigated. (5) Search for chemically defined intraspecific taxa, i.e. chemically differing lineages of morphologically indistinguishable plant taxa, by comparing plants from Schleswig-Holstein with plants collected in other regions. The survey into the plant natural products’ chemodiversity of the flora of Schleswig-Holstein begins with a review of the natural products from Schleswig-Holstein members of the Cichorieae tribe of the Asteraceae family. The Cichorieae tribe of the Asteraceae family, which encompasses 94 genera and about 1500 species and innumerous microtaxa worldwide (Kilian et al. in Systematics, evolution and biogeography of the Compositae, IAPT, Vienna, 2009), is represented by only 17 genera in Schleswig-Holstein: Arnoseris, Chondrilla, Cicerbita, Cichorium, Crepis, Hieracium, Hypochaeris, Lactuca, Lapsana, Leontodon, Picris, Pilosella, Scorzonera, Scorzoneroides, Sonchus, Taraxacum, and Tragopogon. In total, 48 species (50 taxa including the two species with two distinct subspecies each in the region and treating the sections in the hyper-species-rich genus Taraxacum as species here), occur in Schleswig-Holstein. For all of the genera and all but six of the species (Hieracium fuscocinereum, Lactuca macrophylla, Sonchus palustris, and Taraxacum sections Celtica, Hamata, and Obliqua), the array of plant natural products has already been investigated to some degree. However, for only two taxa (Pilosella officinarum and Tragopogon pratensis subsp. minor) also plants from the region of Schleswig-Holstein have been studied and for only very few taxa, such as Cichorium intybus and Taraxacum officinale, all major classes of natural products have been investigated in detail so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Adekenov SM, Kadirberlina GM, Turdybekov KM, Struchkov YT (1991) Terpenoids of Crepis tectorum. Molecular and crystal structure of the sesquiterpene lactone 8-epide-acyl-cinaro-picrin. Khim Prir Soed 27:638–642

    Google Scholar 

  • Akyev BA, Ovezdurdyev A, Sham’yanov ID, Malikov VM (1990) Guaianolides of Lactuca tatarica. Chem Nat Comp 26:218–219

    Google Scholar 

  • Alade GO, Moody JO, Awotona OR, Lai D, Adesanya SA, Proksch P (2017) Cichorin A: a benzo-isochromene from Nypa fruticans endophytic fungus Pestalotiopsis sp. Herba Pol 63:13–17

    Google Scholar 

  • Atta-ur-Rahman Zareen S, Choudhary MI, Akhtar MN, Khan SN (2008) α-Glucosidase inhibitory activity of triterpenoids from Cichorium intybus. J Nat Prod 71:910–913

    CAS  PubMed  Google Scholar 

  • Bandyukova VA, Sergeeva NV, Dzhumyrko SF (1970) Luteolin glycosides in some plants of the family Compositae. Khim Prir Soed 6:470–471

    CAS  Google Scholar 

  • Bate-Smith EC, Sell PD, West C (1968) Chemistry and taxonomy of Hieracium L. and Pilosella Hill. Phytochemistry 7:1165–1169

    CAS  Google Scholar 

  • Bohlmann F, Bohlmann R (1980) Three guaianolides from Hypochoeris radicata. Phytochemistry 19:2045–2046

    CAS  Google Scholar 

  • Bondarenko VG, Glyzin VI, Shelyuto VL (1973) Flavonoids of the flowers of Sonchus arvense. Chem Nat Comp 9:522

    Google Scholar 

  • Bondarenko VG, Glyzin VI, Ban’kovskii AI, Shelyuto VL (1974) Isocynaroside—a new flavone glycoside from Sonchus arvensis. Chem Nat Comp 10:680–681

    Google Scholar 

  • Bondarenko VG, Glyzin VI, Shelyuto VL (1976) Flavonoids of Sonchus arvensis. Chem Nat Comp 12:484

    Google Scholar 

  • Bondarenko VG, Glyzin VI, Shelyuto VL (1978) Sonchoside—a new flavonoid glycoside from Sonchus arvensis. Chem Nat Comp 14:340

    Google Scholar 

  • Bondarenko VG, Glyzin VI, Shelyuto VL (1983) Flavonoids of the flowers of Sonchus oleraceus. Chem Nat Comp 19:228–229

    Google Scholar 

  • Brändel M (2007) Ecology of achene dimorphism in Leontodon saxatilis. Ann Bot 100:1189–1197

    PubMed  PubMed Central  Google Scholar 

  • Buttler KP, Hand R (2008) Liste der Gefäßpflanzen Deutschlands. Kochia-Beiheft 1:1–107

    Google Scholar 

  • Carazzone C, Mascherpa D, Gazzani G, Papetti A (2013) Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatograpy with diode array detection and electrospray ionisation mass spectrometry. Food Chem 138:1062–1071

    CAS  PubMed  Google Scholar 

  • Christiansen W (1953) Neue kritische Flora von Schleswig-Holstein. Heinrich Möller, Rendsburg

    Google Scholar 

  • Christiansen A, Christiansen W, Christiansen W (1922) Flora von Kiel. Wilhelm Handorff, Kiel, p 330

    Google Scholar 

  • Collins DJ, McGilvery DC (2019) Phytochemistry of Australian plants: a live geographically-inclusive database, freely available online. Phytochemistry 158:156

    CAS  Google Scholar 

  • Deplazes-Zemp A, Abiven S, Schaber P, Schaepman M, Schaepman-Strub G, Schmid B, Shimizu KK, Altermatt F (2018) The Nagoya Protocol could backfire on the Global South. Nat Ecol Evol 2:917–919

    PubMed  Google Scholar 

  • Enke N, Gemeinholzer B, Zidorn C (2012) Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae). Org Divers Evol 12:1–16

    Google Scholar 

  • Fazylova AS, Turdybekov KM, Kadirberlina GM, Rakhimova BB, Adekenov SM (2000) Molecular structure of crepidioside A and isolipidiol from Crepis multicaulis. Chem Nat Compd 36:177–180

    CAS  Google Scholar 

  • Feulner M, Schuhwerk F, Doetterl S (2011) Taxonomical value of inflorescence scent in Hieracium s.str. Biochem Syst Ecol 39:732–743

    CAS  Google Scholar 

  • Fiasson JL, Gluchoff-Fiasson K, Mugnier C, Barghi N, Siljak-Yakovlev S (1991) Flavonoid analysis of European species of the genus Hypochoeris (Asteraceae). Biochem Syst Ecol 19:157–162

    CAS  Google Scholar 

  • Fontanel D, Galtier C, Viel C, Gueiffier A (1998) Caffeoyl quinic and tartaric acids and flavonoids from Lapsana communis L. subsp. communis (Asteraceae). Z Naturforsch 53c:1090–1092

    Google Scholar 

  • Fontanel D, Galtier C, Debouzy J-C, Gueiffier A, Viel C (1999) Sesquiterpene lactone glycosides from Lapsana communis L. subsp. communis. Phytochemistry 51:999–1004

    CAS  PubMed  Google Scholar 

  • Frohne D, Jensen U (1998) Systematik des Pflanzenreiches, 5th edn. WVG, Stuttgart

    Google Scholar 

  • Gawrónska-Grzywacz M, Krzaczek T (2009) Flavonoids and coumarins from Hieracium pilosella L. (Asteraceae). Acta Soc Bot Pol 78:189–195

    Google Scholar 

  • Gawrónska-Grzywacz M, Krzaczek T, Nowak R, Los R, Malm A, Cyranka M, Rzeski W (2011) Biological activity of new flavonoid from Hieracium pilosella L. Cent Eur J Biol 6:397–404

    Google Scholar 

  • Giambanelli E, D’Antuono LF, Ferioli F, Frenich AG, Romero-González R (2018) Sesquiterpene lactones and inositol 4-hydroxyphenylacetic acid derivatives in wild edible leafy vegetables from Central Italy. J Food Comp Anal 72:1–6

    CAS  Google Scholar 

  • Giner RM, Recio M-C, Cuellar M-J, Máñez S, Peris JB, Stübing G, Mateu I, Ríos J-L (1993a) A taxonomical study of the subtribe Leontodontinae based on the distribution of phenolic compounds. Biochem Syst Ecol 21:613–616

    CAS  Google Scholar 

  • Giner RM, Ubeda A, Just MJ, Serrano A, Máñez S, Ríos JL (1993b) A chemotaxonomic survey of Sonchus subgenus Sonchus. Biochem Syst Ecol 21:617–620

    Google Scholar 

  • Granica S, Zidorn C (2015) Phenolic compounds from aerial parts as chemosystematic markers in the Scorzonerinae (Asteraceae). Biochem Syst Ecol 58:102–113

    CAS  Google Scholar 

  • Grass S, Zidorn C, Blattner FR, Stuppner H (2006) Comparative molecular and phytochemical investigation of Leontodon autumnalis (Asteraceae, Lactuceae) populations from Central Europe. Phytochemistry 67:122–131

    CAS  PubMed  Google Scholar 

  • Guppy GA, Bohm BA (1976) Flavonoids of five Hieracium species of British Columbia. Biochem Syst Ecol 4:231–234

    CAS  Google Scholar 

  • Harborne JB (1978) The rare flavone isoetin as a yellow flower pigment in Heywoodiella oligocephala and in other Cichorieae. Phytochemistry 17:915–917

    CAS  Google Scholar 

  • Hooper SN, Chandler RF (1984) Herbal remedies of the maritime Indians: phytosterols and triterpenes of 67 plants. J Ethnopharm 10:181–194

    CAS  Google Scholar 

  • Hooper SN, Chandler RF, Lewis E, Jamieson WD (1982) Simultaneous determination of Sonchus arvensis L. triterpenes by gas chromatography-mass spectrometry. Lipids 17:60–63

    CAS  PubMed  Google Scholar 

  • Hussain H, Hussain J, Saleem M, Miana GA, Riaz M, Krohn K, Anwar S (2011) Cichorin A: a new benzo-isochromene from Cichorium intybus. J Asian Nat Prod Res 13:566–569

    CAS  PubMed  Google Scholar 

  • Hussain H, Hussain J, Ali S, Al-Harrasi A, Saleem M, Miana GA, Riaz M, Anwar S, Hussain S, Ali L (2012) Cichorins B and C: two new benzo-isochromenes from Cichorium intybus. J Asian Nat Prod Res 14:297–300

    CAS  PubMed  Google Scholar 

  • Jäger EJ (2017) Rothmaler − Exkursionsflora von Deutschland, Grundband, 21st edn. Springer, Berlin

    Google Scholar 

  • Kenny O, Smyth TJ, Hewage CM, Brunton NP, McLoughlin P (2014) 4-Hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC–SPE–NMR and LC–MS techniques. Phytochemistry 98:197–203

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Tanaka A, Uriuda M, Yamada T, Tanaka R (2016) Three novel triterpenes from Taraxacum officinale roots. Molecules 21:1121

    PubMed Central  Google Scholar 

  • Kilian N, Gemeinholzer B, Lack HW (2009) Tribe Cichorieae Lam. & DC. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, Evolution and Biogeography of the Compositae. IAPT, Vienna

    Google Scholar 

  • Kilian N, Hand R, Raab-Straube E von (eds) (2019) Cichorieae Systematics Portal. http://cichorieae.e-taxonomy.net/portal/. Accessed 18 Mar 2019

  • Kirschner J, Štěpánek J (2011) Typification of Leontodon taraxacum L. (≡ Taraxacum officinale F.H. Wigg.) and the generic name Taraxacum: a review and a new typification proposal. Taxon 60:216–220

    Google Scholar 

  • Kisiel W (1998) Flavonoids from Lactuca quercina and L. tatarica. Acta Soc Bot Pol 67:247–248

    CAS  Google Scholar 

  • Kisiel W, Barszcz B (1995) Sesquiterpenes and phenolics from Mycelis muralis. Pol J Chem 69:1298–1300

    CAS  Google Scholar 

  • Kisiel W, Barszcz B (1998) A germacrolide glucoside from Lactuca tatarica. Phytochemistry 48:205–206

    CAS  Google Scholar 

  • Kisiel W, Kohlmünzer S (1989a) Sesquiterpene lactone glycosides from Crepis tectorum. Pol J Chem 63:527–530

    CAS  Google Scholar 

  • Kisiel W, Kohlmünzer S (1989b) A sesquiterpene lactone glycoside from Crepis tectorum. Phytochemistry 28:2403–2404

    CAS  Google Scholar 

  • Kisiel W, Barszcz B, Szneler E (1997) Sesquiterpene lactones from Lactuca tatarica. Phytochemistry 45:365–368

    CAS  Google Scholar 

  • Kroschewsky JR, Mabry TJ, Markham KR, Alston RE (1969) Flavonoids from the genus Tragopogon (Compositae). Phytochemistry 8:1495–1498

    CAS  Google Scholar 

  • Krzaczek T, Smolarz H (1988) Phytochemical studies of the herb Tragopogon orientalis L. (Asteraceae). I. Components of the petroleum ether extract. Acta Soc Bot Pol 57:85–92

    CAS  Google Scholar 

  • Kumari R, Ali M, Aeri V (2012) Two new triterpenoids from Cichorium intybus L. roots. J Asian Nat Prod Res 14:7–13

    CAS  PubMed  Google Scholar 

  • Máñez S, Recio MC, Giner RM, Sanz MJ, Terencio MC, Peris JB, Stübing G, Rios J-L (1994) A chemotaxonomic review of the subtribe Crepidinae based on its phenolic constituents. Biochem Syst Ecol 22:297–305

    Google Scholar 

  • Mertens F, Çiçek SS, Zidorn C (2018) Integrifolin from Pilosella officinarum (Asteraceae, Cichorieae): first record of a sesquiterpene lactone in the genus Pilosella. Biochem Syst Ecol 80:43–45

    CAS  Google Scholar 

  • Michalska K, Kisiel W (2005) Sesquiterpenoids and phenolics from Taraxacum rubicundum. Pol J Chem 79:1547–1549

    CAS  Google Scholar 

  • Michalska K, Kisiel W (2008) Sesquiterpene lactones from Taraxacum erythrospermum. Biochem Syst Ecol 36:444–446

    CAS  Google Scholar 

  • Michalska K, Kisiel W (2009) Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica. Acta Soc Bot Pol 78:25–27

    CAS  Google Scholar 

  • Michalska K, Stojakowska A, Malarz J, Doležalová I, Lebeda A, Kisiel W (2009) Systematic implications of sesquiterpene lactones in Lactuca species. Biochem Syst Ecol 37:174–179

    CAS  Google Scholar 

  • Michalska K, Marciniuk J, Kisiel W (2010) Sesquiterpenoids and phenolics from roots of Taraxacum udum. Fitoterapia 81:434–436

    CAS  PubMed  Google Scholar 

  • Michalska K, Pieron K, Stojakowska A (2018) Sesquiterpene lactones and phenolics from roots of Leontodon hispidus L. subsp. hispidus. Nat Prod Comm 13:393–394

    Google Scholar 

  • Mierwald U, Romahn K (2006) Die Farn- und Blütenpflanzen Schleswig-Holsteins. Rote Liste, vol 1. Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, Flintbek

    Google Scholar 

  • Mikolajczak KL, Smith CR, Bagby MO, Wolff IA (1964) New type of naturally occurring polyunsaturated fatty acid. J Org Chem 29:318–322

    CAS  Google Scholar 

  • Miller SJ, Clardy J (2009) Beyond grind and find. Nature Chem 1:261–263

    CAS  Google Scholar 

  • Miyase T, Kohsaka H, Ueno A (1992) Tragopogonosides A-I, oleanane saponins from Tragopogon pratensis. Phytochemistry 31:2087–2091

    CAS  Google Scholar 

  • Naumoska K, Vovk I (2015) Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry. J Chrom A 1381:229–238

    CAS  Google Scholar 

  • Ohmura K, Miyase T, Ueno A (1989) Sesquiterpene glucosides and a phenylbutanoid glycoside from Hypochoeris radicata. Phytochemistry 28:1919–1924

    CAS  Google Scholar 

  • Ou ZQ, Schmierer DM, Rades T, Larsen L, McDowell A (2013) Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J Pharm Pharmacol 65:271–279

    CAS  PubMed  Google Scholar 

  • Pietra F (2002) Biodiversity and natural product diversity. Tetrahedron Org Chem Ser 21:1–351

    Google Scholar 

  • Pyrek JS (1985) Sesquiterpene lactones from Cichorium intybus and Leontodon autumnalis. Phytochemistry 24:186–188

    Google Scholar 

  • Radulović N, Blagojević P, Palić R (2009) Fatty acid derivied compounds: the dominant volatile class of the essential oil poor Sonchus arvensis subsp. uliginosus (Bieb.) Nyman. Nat Prod Comm 4:405–410

    Google Scholar 

  • Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613

    CAS  PubMed  Google Scholar 

  • Rees S, Harborne J (1984) Flavonoids and other phenolics of Cichorium and related members of the Lactuceae (Compositae). Bot J Linn Soc 89:313–319

    Google Scholar 

  • Romahn K (2010) Funde seltener, gefährdeter, neuer und wenig beachteter Gefäßpflanzen in Schleswig-Holstein VI. Kiel Not Pflanzenkd 37:83–103

    Google Scholar 

  • Romahn K (2012) Funde seltener, gefährdeter, neuer und wenig beachteter Gefäßpflanzen in Schleswig-Holstein VII. Kiel Not Pflanzenkd 38:48–67

    Google Scholar 

  • Saeki D, Yamada T, In Y, Kajimoto T, Tanaka R, Iizuka Y, Nakane T, Takano A, Masuda K (2013) Officinatrione: an unsusual (17S)-17,18-seco-lupane skeleton, and four novel lupan-type triterpenoids from the roots of Taraxacum officinale. Tetrahedron 69:1583–1589

    CAS  Google Scholar 

  • Sareedenchai V, Ganzera M, Ellmerer E-P, Lohwasser U, Zidorn C (2009) Phenolic compounds from Tragopogon porrifolius L. Biochem Syst Ecol 37:234–236

    CAS  Google Scholar 

  • Schütz K, Kammerer DR, Carle R, Schieber A (2005) Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rap Comm Mass Spec 19:179–186

    Google Scholar 

  • Schütz K, Carle R, Schieber A (2006) Taraxacum − a review on its phytochemical and pharmacological profile. J Ethnopharm 107:313–323

    Google Scholar 

  • Sharifi-Rad M, Roberts TH, Matthews KR, Bezerra CF, Morais-Braga MFB, Coutinho HD, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, del Mar Contreras M, Varoni EM, Verma DR, Iriti M, Sharifi-Rad J (2018) Ethnobotany of the genus Taraxacum -Phytochemicals and antimicrobial activity. Phytother Res 32:2131–2145

    CAS  PubMed  Google Scholar 

  • Shelyuto VL, Glyzin VI, Kruglova EP, Smirnova LP (1977) Flavonoids from Hieracium pilosella. Chem Nat Comp 13:727–728

    Google Scholar 

  • Shimizu S, Miyase T, Ueno A, Usmanghani K (1989) Sesquiterpene lactone glycosides and ionone derivative glycosides from Sonchus asper. Phytochemistry 28:3399–3402

    CAS  Google Scholar 

  • Shukla S, Kumar A, Bahadur L, Pal M (2015) Fatty acid composition of Sonchus arvensis roots. Ind J Nat Prod Res 6:62–64

    CAS  Google Scholar 

  • Shulha O, Zidorn C (2019) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008–2017). Phytochemistry. https://doi.org/10.1016/j.phytochem.2019.02.001

    Article  PubMed  Google Scholar 

  • Smolarz H, Krzaczek T (1988) Phytochemical studies of the herb Tragopogon orientalis L. (Asteraceae). II. Components of the methanol extract. Acta Soc Bot Pol 57:93–105

    CAS  Google Scholar 

  • Stanciu G, Lupsor S, Arcuş M (2007) GC-MS characterization of the volatile oil from Lapsana communis L. Ovidius Univ Ann Chem 18:72–75

    CAS  Google Scholar 

  • Statistisches Bundesamt (2018) Bundesländer mit Hauptstädten nach Fläche, Bevölkerung und Bevölkerungsdichte. Gebietstand 31/12/2017. Published 10/2018. www.destatis.de. Accessed 05 Mar 2019

  • Street RA, Sidana J, Prinsloo G (2013) Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evid Based Compl Alt Med 2013:579319

    Google Scholar 

  • Terencio MC, Giner RM, Sanz MJ, Máñez S, Ríos JL (1993) On the occurrence of caffeoyltartronic acid and other phenolics in Chondrilla juncea. Zeitschr Naturforsch 48c:417–419

    Google Scholar 

  • The Plant List (2019) The Plant List: a working list of all plant species. http://www.theplantlist.org. Accessed 20 Jan 2019

  • Wang X-X, Lin C-J, Jia Z-L (2006) Triterpenoids and sesquiterpenes from Mulgedium tataricum. Planta Med 72:764–767

    CAS  PubMed  Google Scholar 

  • Wang X-X, Gao X, Jia Z-J (2010) Sesquiterpenoids from Lactuca tatarica. Fitoterapia 81:42–44

    CAS  PubMed  Google Scholar 

  • Warashina T, Miyase T, Ueno A (1991) Novel acylated saponins from Tragopogon porrifolius L. Isolation and the structures of tragopogonsaponins A-R. Chem Pharm Bull 39:388–396

    CAS  Google Scholar 

  • Wolfender J-L, Nuzillard J-M, van der Hooft JJJ, Renault J-H, Bertrand S (2019) Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography—high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem 91:704–742

    CAS  PubMed  Google Scholar 

  • Xu Y-J, Sun S-B, Sun L-M, Qiu D-F, Liu X-J, Jiang Z-B, Yuan C-S (2008) Quinic acid esters and sesquiterpenes from Sonchus arvensis. Food Chem 111:92–97

    CAS  Google Scholar 

  • Yadava RN, Jharbade J (2007) A new bioactive triterpenoid saponin from the seeds of Lactuca scariola Linn. Nat Prod Res 21:500–506

    CAS  PubMed  Google Scholar 

  • Yadava RN, Jharbade J (2008) New antibacterial triterpenoid saponin from Lactuca scariola. Fitoterapia 79:245–249

    CAS  PubMed  Google Scholar 

  • Zhang Z-X, Xie W-D, Li P-L, Shi Y-P, Jia Z-J (2006) Sesquiterpenoids and phenylpropane derivatives from Sonchus uliginosus. Helv Chim Acta 89:2927–2934

    CAS  Google Scholar 

  • Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296

    CAS  PubMed  Google Scholar 

  • Zidorn C (2012) Leontodon and Scorzoneroides (Asteraceae, Cichorieae) in Italy. Plant Biosyst 146-S1:41–51

    Google Scholar 

  • Zidorn C (2015) Isoetin and its derivatives: analytics, chemosystematics, and bioactivities. Biochem Syst Ecol 61:402–412

    CAS  Google Scholar 

  • Zidorn C (2019) Plant chemophenetics: a new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry. https://doi.org/10.1016/j.phytochem.2019.02.013

    Article  PubMed  Google Scholar 

  • Zidorn C, Stuppner H (2001a) Chemosystematics of taxa from the Leontodon section Oporinia. Biochem Syst Ecol 29:827–837

    CAS  PubMed  Google Scholar 

  • Zidorn C, Stuppner H (2001b) Evaluation of chemosystematic characters in the genus Leontodon. Taxon 50:115–133

    Google Scholar 

  • Zidorn C, Ellmerer-Müller EP, Stuppner H (1999) Eudesmanolides and inositol derivatives from Taraxacum linearisquameum. Phytochemistry 51:991–994; Errata: Phytochemistry 53:317; 54:349 (both 2000)

  • Zidorn C, Ellmerer-Müller EP, Stuppner H (1999b) Eudesmanolides and inositol derivatives from Taraxacum linearisquameum. Phytochemistry 51:991–994

    CAS  Google Scholar 

  • Zidorn C, Ellmerer-Müller EP, Ongania K-H, Sturm S, Stuppner H (2000a) New taxonomically significant sesquiterpenoids from Leontodon autumnalis. J Nat Prod 63:812–816

    CAS  PubMed  Google Scholar 

  • Zidorn C, Ellmerer-Müller EP, Stuppner H (2000b) Tyrolobibenzyls - novel secondary metabolites from Scorzonera humilis. Helv Chim Acta 83:2920–2925

    CAS  Google Scholar 

  • Zidorn C, Ellmerer-Müller EP, Stuppner H (2001) A germacranolide and three hydroxybenzylalcohol derivatives from Hieracium murorum and Crepis bocconi. Phytochem Anal 12:281–285

    CAS  PubMed  Google Scholar 

  • Zidorn C, Gottschlich G, Stuppner H (2002a) Chemosystematic investigations on phenolics from flowerheads of Central European taxa of Hieracium (Asteraceae). Plant Syst Evol 231:39–58

    CAS  Google Scholar 

  • Zidorn C, Spitaler R, Ellmerer-Müller EP, Perry NB, Gerhäuser C, Stuppner H (2002b) Structure of tyrolobibenzyl D and biological activity of tyrolobibenzyls from Scorzonera humilis. Z Naturforsch 57c:614–619

    Google Scholar 

  • Zidorn C, Ellmerer EP, Sturm S, Stuppner H (2003) Tyrolobibenzyls E and F from Scorzonera humilis and distribution of caffeic acids, lignans and tyrolobibenzyls in European taxa of the subtribe Scorzonerinae (Lactuceae, Asteraceae). Phytochemistry 63:61–67

    CAS  PubMed  Google Scholar 

  • Zidorn C, Lohwasser U, Pschorr S, Salvenmoser D, Ongania K-H, Ellmerer EP, Börner A, Stuppner H (2005a) Bibenzyls and dihydroisocoumarins from white salsify (Tragopogon porrifolius subsp. porrifolius). Phytochemistry 66:1691–1697

    CAS  PubMed  Google Scholar 

  • Zidorn C, Schubert B, Stuppner H (2005b) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872

    CAS  Google Scholar 

  • Zidorn C, Udovičić V, Spitaler R, Ellmerer EP, Stuppner H (2005c) Secondary metabolites from Arnoseris minima. Biochem Syst Ecol 33:827–829

    CAS  Google Scholar 

  • Zidorn C, Grass S, Ellmerer EP, Ongania K-H, Stuppner H (2006a) Stilbenoids from Tragopogon orientalis. Phytochemistry 67:2182–2188

    CAS  PubMed  Google Scholar 

  • Zidorn C, Spitaler R, Ellmerer EP, Stuppner H (2006b) On the occurrence of the guaianolide glucoside ixerin F in Chondrilla juncea and its chemosystematic significance. Biochem Syst Ecol 34:900–902

    CAS  Google Scholar 

  • Zidorn C, Schubert B, Stuppner H (2008) Phenolics as chemosystematic markers in and for the genus Crepis (Asteraceae, Cichorieae). Sci Pharm 76:743–750

    CAS  Google Scholar 

  • Zidorn C, Petersen BO, Sareedenchai V, Ellmerer EP, Duus JØ (2010) Tragoponol, a dimeric dihydroisocoumarin from Tragopogon porrifolius L. Tetrahedron Lett 51:1390–1393

    CAS  Google Scholar 

Download references

Acknowledgements

Many thanks are due to Dr. Erik Christensen (AG Geobotanik SH, Kiel; http://www.ag-geobotanik.de/) for fruitful discussions and support of the idea to review the phytochemistry/chemophenetics of the flora of Schleswig-Holstein step-by-step. Thanks are moreover due to Dr. Günter Gottschlich (Tübingen) for clarifying some aspects of Hieracium/Pilosella nomenclature and for collection details of Hieracium murorum investigated by Zidorn et al. (2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Zidorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidorn, C. Bioprospecting of plant natural products in Schleswig-Holstein (Germany) I: chemodiversity of the Cichorieae tribe (Asteraceae) in Schleswig-Holstein. Phytochem Rev 18, 1223–1253 (2019). https://doi.org/10.1007/s11101-019-09609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09609-z

Keywords

Navigation