Skip to main content
Log in

Plant-defensive sesquiterpenoids from Senecio species with biopesticide potential

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Senecio species have been used in folk medicine for treatment of wounds, as antiemetic, anti-inflammatory and their crude extract or dry powder as crop protection agents. The toxicity exhibited to livestock by these plants has been attributed to their content in pyrrolizidine alkaloids and furanoeremophilane type sesquiterpenes. Sesquiterpenoids with eremophilane, cacalol, bisabolane, silphinene, caryophillane, humulane, germacrane and benzofurane skeletons have been isolated from this genus. Here we focus on bioactive sesquiterpenoids with plant defensive properties isolated from Senecio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar-Martínez M, Jiménez-Estrada M, Macías-Ruvalcaba NA, Lotina-Hennsen B (1996) Electrochemical properties of the herbicide cacalol and its derivatives in protic and aprotic solvents by using cyclic voltammetry. Correlation with Hill′s reaction activities. J Agric Food Chem 44:290–295

    Article  Google Scholar 

  • Ahmed Amal A, Zein Salwa N, Khatab Eman AH (2012) Characterization on celery mosaic virus isolated from some apiaceae plants. Int J Virol 8:214–223

    Article  Google Scholar 

  • Alford AR, Murray KD (2000) Prospects for citrus limonoids in insect pest management. ACS Symp Ser 758:201–211

    Article  CAS  Google Scholar 

  • Anaya AL, Hernández-Bautista BE, Torres-Barragán A, León-Cantero J, Jiménez-Estrada M (1996) Phytotoxicity of cacalol and some derivatives obtained from the roots of Psacalium decompositum (A.Gray) H. Rob. & Brettell (Asteraceae), Matarique or maturin. J Chem Ecol 22:393–404

    Article  CAS  Google Scholar 

  • Arciniegas A, Pérez-Castorena AL, Maldonado J, Avila J, Villaseñor JL, e Romo VA (2008) Chemical constituents of Roldana lineolata. Fitoterapia 79:47–52

    Article  PubMed  CAS  Google Scholar 

  • Arias Cassará ML, Borkosky SA, González Sierra M, Bardón A, Ybarra MI (2010) Two new furanoeremophilanes from Senecio santelisis. Chem Biodivers 7:1745–1753

    Article  PubMed  Google Scholar 

  • Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, González-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pest Biochem Phys 91:17–23

    Article  CAS  Google Scholar 

  • Bohlmann F, Bapuji M (1982) Cacalol derivatives from Senecio lydenburguensis. Phytochemistry 21:681–684

    Article  CAS  Google Scholar 

  • Bohlmann F, Suwita A, Mahanta P (1976) Natürlich vorkommende Terpen-Derivate, 73 Weitere Inhaltsstoffe aus Senecio-Arten. Chem Ber 109:3570–3573

    Article  CAS  Google Scholar 

  • Bohlmann F, Ziesche J, King RM, Robinson H (1980) Seven furanoeremophilanes from three Senecio species. Phytochemistry 19:2675–2680

    Article  CAS  Google Scholar 

  • Bohlmann F, Gupta RK, Jakupovik J, King JM, Robinson H (1981) Seco-eremophilanolides from Senecio macrotis. Phytochemistry 20:1155–1156

    Article  CAS  Google Scholar 

  • Bohlmann F, Jakupovic J, Warning U, Grenz M, Chau-Thi TV et al (1986a) Sesquiterpenes with new carbon skeletons, furanoeremophilanes, secoeremophilanes and other constituents from argentinian Senecio species. Bull Soc Chim Belg 95:707–736

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C, Jakupovic J, Grenz M, Castro V et al (1986b) Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 25:1151–1160

    Article  CAS  Google Scholar 

  • Boina DR, Bloomquist JR (2011) Blockage of chloride channels and anion transporters with pesticidal natural products and their synthetic analogs. Phytochem Rev 10:217–226

    Article  CAS  Google Scholar 

  • Boussaada O, Ben Halima Kamel M, Ammar S, Haouas D, Mighri Z, Helal NA (2008) Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull Insectology 61:283–289

    Google Scholar 

  • Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, Portland, OR

    Google Scholar 

  • Burgueño-Tapia E, Bucio MA, Rivera A, Joseph-Nathan P (2001) Cacalolides from Senecio madagascariensis. J Nat Prod 64:518–521

    Article  PubMed  Google Scholar 

  • Burgueño-Tapia E, Joseph-Nathan P (2003) Cacalolides from Senecio barba-johannis. Magn Reson Chem 41:386–390

    Article  Google Scholar 

  • Burgueño-Tapia E, González-Coloma A, Martín-Benito D, Joseph-Nathan P (2007a) Antifeedant and phytotoxic activity of cacalolides and eremophilanolides. Z Naturforsch 62c:362–366

    Google Scholar 

  • Burgueño-Tapia E, López-Escobedo S, González-Ledesma M, Joseph-Nathan P (2007b) A new eremophilanolide from Senecio sinuatus Gilib. Magn Reson Chem 45:457–462

    Article  PubMed  Google Scholar 

  • Carrizo R, Sosa ME, Favier LS, Penna F, Guerreiro E (1998) Growth inhibitory activities of benzofuran and chromene derivatives toward Tenebrio molitor. J Nat Prod 61:1209–1211

    Article  PubMed  CAS  Google Scholar 

  • Cormack WF (2006) Crop performance in a stockless arable organic rotation in eastern England. Biol Agric Hortic 24:1–20

    Article  Google Scholar 

  • Cui LL, Dong J, Francis F, Liu YJ, Heuskin S, Longnay G, Cheng JL, Bragard C, Tooker JF, Liu Y (2012) E-β-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China. Crop Prot 35:91–96

    Article  CAS  Google Scholar 

  • Domínguez DM, Reina M, Santos-Guerra A, Santana O, Agulló T, Lopez-Balboa C, González-Coloma A (2008a) Pyrrolizidine alkaloids from Canarian endemic plants and their biological effects. Biochem Syst Ecol 36:153–166

    Article  Google Scholar 

  • Domínguez DM, Reina M, Villarroel L, Fajardo V, González-Coloma A (2008b) Bioactive Furanoeremophilanes from Senecio otites Kunze ex DC. Z Naturforsch 63c:837–842

    Google Scholar 

  • Dupre S, Grenz M, Japukovic J, Bohlmann F, Niemeyer HM (1991) Eremophilane, germacrane and shikimic acid derivatives from chilean Senecio species. Phytochemistry 30:1211–1220

    Article  CAS  Google Scholar 

  • Eisner T, Rossini C, Gonzalez A, Iyengar VK, Siegler MVS, Smedley SR (2002) Paternal investment in egg defence. In: Hilker M, Meiners T (eds) Chemoecology of Insect Eggs. Egg Deposition, Blackwell, Oxford, pp 91–116

    Google Scholar 

  • Fei DQ, Zhang ZX, Chen JJ, Gau K (2007) Eremophilane-type sesquiterpenes from Senecio nemorensis. Planta Med 73:241–243

    Article  Google Scholar 

  • Frąckowiak B, Ochalik K, Bialońska A, Ciunik Z, Wawrzeńczyk C, Lochyński S (2006) Stereochemistry of terpene derivatives. Part 5: synthesis of chiral lactones fused to carane system-insect feeding deterrents. Tetrahedron-Asymmetr 17:124–129

    Article  Google Scholar 

  • Frodin DG (2004) History and concepts of big plant genera. Taxon 53:753–776

    Article  Google Scholar 

  • Gliszczyńska A, MasLowiec D, Szczepanik M, Nwarot J, Wawrzeńczyk C (2011) Synthesis and antifeedants activity of farnesol derivatives. Przem Chem 90:759–763

    Google Scholar 

  • González-Coloma A, Reina M, Cabrera R, Castañera P, Gutierrez C (1995) Antifeedant and toxic effects of sesquiterpenes from Senecio palmensis to Colorado Potato Beetle. J Chem Ecol 21:1255–1270

    Article  Google Scholar 

  • González-Coloma A, Gutierrez C, Cabrera R, Reina M (1997) Silphinene derivatives: their effects and modes of action on Colorado Potato Beetle. J Agric Food Chem 45:946–950

    Article  Google Scholar 

  • González-Coloma A, Valencia F, Martín N, Hoffmann JJ, Hutter L, Marco JA, Reina M (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–129

    Article  PubMed  Google Scholar 

  • Gu YQ, Wang Y, Franzblau SG, Montenegro G, Timmermann BN (2004) Constituens of Senecio chionophilus with potential antitubercular activity. J Nat Prod 67:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Fereres A, Reina M, Cabrera R, González-Coloma A (1997) Behavioral and sublethal effects of structurally related lower terpenes on Myzus persicae. J Chem Ecol 23:1641–1650

    Article  CAS  Google Scholar 

  • Hägele BF, Rowell-Rahier M (2001) Choice, performance and heritability of performance of specialist insect herbivores towards cacalol and seneciphylline two allelochemicals of Adenostyles alpine (Asteraceae). J Evol Biol 13:131–142

    Article  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hartmann T, Dierich B (1998) Chemical diversity, variation of pyrrolizidine alkaloids of the senecionine type, Biological need or coincidence? Planta 206:443–451

    Article  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis, metabolism of pyrrolizidine alkaloids in plants, specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Topics in current chemistry, vol 209. Springer, Berlin, pp 207–244

  • Jiménez-Estrada M, Cruz-Lozano R, Valdés JM, León-Cantero JR, Alarcón G, Sveshtarova BP (1992) Antimicrobial activity of cacalol and its derivatives. Rev Latinoam Quim 22–23:14–17

    Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release, EICA hypothesis revisited, incorporating the fundamental difference between specialist, generalist herbivores. Ecol Lett 8:704–714

    Article  Google Scholar 

  • Kostiw M, Trojanowska E (2011) Impact of feeding time on PVY and PVY NTN transmission by Myzus persicae (SULZ). J Plant Prot Res 51:429–434

    Google Scholar 

  • Loizzo MR, Statti GA, Tundis R, Conforti F, Bonesi M, Auteliano G, Houghton PJ, Miljkovic-Brake A, Menichini F (2004) Antibacterial and antifungal activity of Senecio inaequidens DC. and Senecio vulgaris L. Phytother Res 18:777–779

    Article  PubMed  Google Scholar 

  • Lottina-Hennsen B, Roque-Reséndiz JL, Jiménez M, Aguilar M (1991) Inhibition of oxygen evolution by cacalol and its derivatives. Z Naturforsch 46:777–780

    Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    Article  PubMed  CAS  Google Scholar 

  • Mandal B, Vijayanandraj S, Shilpi S, Pun KB, Singh V, Pant RP, Jain RK, Varadarasan S, Varma A (2012) Disease distribution and characterization of a new macluravirus associated with chirke disease of large cardamom. Ann Appl Biol 160:225–236

    Article  CAS  Google Scholar 

  • Mann J, Davidson RS, Hobbs JB, Banthorpe DV, Harborne JB (1994) Natural products: their chemistry and biological significance. Reading, United Kingdom

    Google Scholar 

  • Mericli AH, Mericli F, Japukovik J, Bohlmann F, Dominguez XA, Vega HS (1989) Eremophilanes derivatives and other constituents from Mexican Senecio species. Phytochemistry 28:1149–1153

    Article  CAS  Google Scholar 

  • Mohamed AEHH, Ahmed AA (2005) Eremophilane-type sesquiterpene derivatives from Senecio aegypticus var discoideus. J Nat Prod 68:439–442

    Article  CAS  Google Scholar 

  • Morimoto M, Komai K (2006) Insect antifeedant activity of natural products and the structure-activity relationship of their derivatives. In: Rimando AM, Duke SO (eds) Natural products for pest management. ACS Sym Ser, 927:182–193

  • Mullin CA, González-Coloma A, Gutiérrez C, Reina M, Eichenseer H, Hollister B, Chyb S (1997) Antifeedant effects of some novel terpenoids on Chrysomelidae beetles: comparisons with alkaloids on an alkaloid-adapted and nonadapted species. J Chem Ecol 23:1851–1862

    Article  CAS  Google Scholar 

  • Pérez AL, Vidales P, Cárdenas J, de Romo VA (1991) Eremophilanolides from Senecio toluccanus var. Modestus. Phytochemistry 30:905–908

    Article  Google Scholar 

  • Pérez SG, Ramos-López SA, Zavala-Sánchez MA, Cárdenas-Ortega NC (2010) Activity of essencial oils as a biorational alternative to control coleopteran insects in stored grains. J Med Plants Res 4:2827–2835

    Google Scholar 

  • Petzinger E (2011) Pyrrolizidine alkaloids and seneciosis in farm animals. Part 1: occurrence, chemistry and toxicology. Tierarztl Prax Ausg G Grosstiere Nutztiere 39:221–230

    PubMed  CAS  Google Scholar 

  • Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14:255–281

    Article  CAS  Google Scholar 

  • Proksch P, Rodríguez E (1983) Chromenes and benzofuranes of the Asteraceae, their chemistry and biological significance. Phytochemistry 22:2335–2348

    Article  CAS  Google Scholar 

  • Reina M, González-Coloma A, Gutiérrez C, Cabrera R, Rodríguez ML, Fajardo V, Villarroel L (2001) Defensive Chemistry of Senecio miser. J Nat Prod 64:6–11

    Article  PubMed  CAS  Google Scholar 

  • Reina M, Nold M, Santana O, Orihuela JC, González-Coloma A (2002) C-5 Substituted Antifeedant Silphinene Sesquiterpenes from Senecio palmensis. J Nat Prod 65:448–453

    Article  PubMed  CAS  Google Scholar 

  • Reina M, González-Coloma A, Domínguez-Díaz D, Cabrera R, Giménez Mariño C, Rodríguez ML, Villarroel L (2006) Bioactive eremophilanolides from Senecio poepigii. Nat Prod Res 20:13–19

    Article  PubMed  CAS  Google Scholar 

  • Reina M, Santana O, Domínguez DM, Villarroel L, Fajardo V, Rodríguez ML, González-Coloma A (2012) Defensive sesquiterpenes of Senecio candidans and S. magellanicus, and their structure-activity relationships. Chem Biodivers 9:625–643

    Article  PubMed  CAS  Google Scholar 

  • Silva CdM, Bolzan AA, Mallmann CA, Pozzatti P, Alves SH, Heinzmann BM (2010) Sesquiterpenoids of Senecio bonariensis Hook & Arn, Asteraceae. Braz J Pharmacogn 20:87–92

    Google Scholar 

  • Speiser B, Harmatha J, Rowell-Rahier M (1992) Effects of pyrrolizidine alkaloids and sesquiterpenes on snail feeding. Oecologia 92:257–265

    Article  Google Scholar 

  • Urones JG, Teresa JP, Marcos IS, Moro RF, Barcal PB, Cuadrado MJS (1987) Acetophenones and terpenoids from Senecio gallicus. Phytochemistry 26:1113–1116

    Article  CAS  Google Scholar 

  • Van Dam N, Vuister LWM, Bergshoeff C, De Vos H, Van der Meijden ED (1995) The ″Raison D’être″ of pyrrolizidine alkaloids in Cynoglossum officinale, Deterrent effects againts generalist hervibores. J Chem Ecol 21:507–523

    Article  Google Scholar 

  • Verheggen FJ, Fagel Q, Heuskin S, Lognay G, Francis F, Haubruge E (2007) Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis pallas, to sesquiterpenes semiochemicals. J Chem Ecol 33:2148–2155

    Article  PubMed  CAS  Google Scholar 

  • Wiedenfeld H (2011) Plants containing pirrolizidine alkaloids: toxicity and problems. Food Addit Contam 28:282–292

    Article  CAS  Google Scholar 

  • Yang Y, Zhao L, Wang YL, Chang ML, Huo CH, Gu YC, Shi QW, Kiyota H (2011) Chemical and pharmacological research on plants from the genus Senecio. Chem Biodivers 8:13–72

    Article  PubMed  CAS  Google Scholar 

  • Zdero C, Bohlmann F, Liddell JR (1989) Seco-eremophilanes and other constituents from south african Senecio species. Phytochemistry 28:3532–3534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by a MICINN (CTQ2009-14629-C01) grant and A.G. Portero by a JAE-CSIC predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portero, A.G., González-Coloma, A., Reina, M. et al. Plant-defensive sesquiterpenoids from Senecio species with biopesticide potential. Phytochem Rev 11, 391–403 (2012). https://doi.org/10.1007/s11101-013-9279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9279-3

Keywords

Navigation