Skip to main content
Log in

Supercritical methodologies applied to the production of biopesticides: a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Supercritical technologies are new, environmentally friendly, advanced separation techniques that have attracted the attention of both industry and academy in their aspirations of producing safer products with cleaner processes. In the field of biopesticides, supercritical fluids are being used in different stages, from the extraction of active ingredients from natural matrices to the encapsulation of blends during the formulation of the final commercial pesticide. This review summarizes different supercritical processes that arise in literature comprising supercritical fluid extraction, supercritical antisolvent fractionation or extraction, supercritical assisted atomization, particle from gas saturated solutions and supercritical solvent impregnation among others. The aim of this work is to give a general view of supercritical fluids in the field of biopesticides production, optimization and formulation, emphasizing in the extraction, fractionation and encapsulation and highlighting their importance when green, solvent free processes have to be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Shafy S, Zayed AA (2002) In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Vet Parasitol 106:89–96

    Article  PubMed  CAS  Google Scholar 

  • ACRA Nature and Science in cooperation (2012), Milano. http://www.acra.it/index.php?option=com_content&view=article&id=539&Itemid=479&lang=en. Cited 25 July 2012

  • Adami R, Osseo L, Reverchon E (2009) Micronization of lysozyme by supercritical assisted atomization. Biotechnol Bioeng 104:1162–1170

    Article  PubMed  CAS  Google Scholar 

  • Adami R, Liparoti S, Reverchon E (2011) A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds. Chem Eng J 173:55–61

    Article  CAS  Google Scholar 

  • Almeida P, Mezzomo N, Ferreira S (2012) Extraction of Mentha spicata L. volatile compounds: evaluation of process parameters and extract composition. Food Bioprocess Technol 5:548–559

    Article  CAS  Google Scholar 

  • Ambrosino P, Fresa R, Fogliano V et al (1999) Extraction of azadirachtin A from neem seed kernels by supercritical fluid and its evaluation by HPLC and LC/MS. J Agric Food Chem 47:5252–5256

    Article  PubMed  CAS  Google Scholar 

  • Anastas APT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, USA

    Google Scholar 

  • Aresta M, Dibenedetto A, Dileo C et al (2003) The first synthesis of a cyclic carbonate from a ketal in scCO2. J Supercrit Fluids 25:177–182

    Article  CAS  Google Scholar 

  • Aro H, Järvenpää E, Könkö K et al (2009) Isolation and purification of egg yolk phospholipids using liquid extraction and pilot-scale supercritical fluid techniques. Eur Food Res Technol 228:857–863

    Article  CAS  Google Scholar 

  • Ban D, Sladonja B, Lukić M et al (2010) Comparison of pyrethrins extraction methods efficiencies. Afr J Biotechnol 9:2702–2708

    CAS  Google Scholar 

  • Barton P, Hughes RE Jr, Hussein MM (1992) Supercritical carbon dioxide extraction of peppermint and spearmint. J Supercrit Fluids 5:157–162

    Article  CAS  Google Scholar 

  • Baysal T, Starmans DA (1999) Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J Supercrit Fluids 14:225–234

    Article  CAS  Google Scholar 

  • Belhadj-Ahmed F, Badens E, Llewellyn P et al (2009) Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. J Supercrit Fluids 51:278–286

    Article  CAS  Google Scholar 

  • Benelli P, Riehl CAS, Smânia A Jr et al (2010) Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: mathematical modeling and extract composition. J Supercrit Fluids 55:132–141

    Article  CAS  Google Scholar 

  • Bernardo-Gil MG, Roque R, Roseiro LB et al (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 59:36–42

    Article  CAS  Google Scholar 

  • Braga MEM, Ehlert PAD, Ming LC, Meireles MAA (2005) Supercritical fluid extraction from Lippia alba: global yields, kinetic data, and extract chemical composition. J Supercrit Fluids 34:149–156

    Article  CAS  Google Scholar 

  • Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  PubMed  CAS  Google Scholar 

  • Cagniard de la Tour C (1822) Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’essence de pétrole rectifiée. Ann Chim Phys 21:127–132 (Supplément ibid., 178–182)

    Google Scholar 

  • Campardelli R, Adami R, Della Porta G, Reverchon E (2012) Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent. Chem Eng J 192:246–251

    Article  CAS  Google Scholar 

  • Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Cardoso MAT, Monteiro GA, Cardoso JP et al (2008) Supercritical antisolvent micronization of minocycline hydrochloride. J Supercrit Fluids 44:238–244

    Google Scholar 

  • Carlson LHC, Machado RAF, Spricigo CB et al (2001) Extraction of lemongrass essential oil with dense carbon dioxide. J Supercrit Fluids 21:33–39

    Article  CAS  Google Scholar 

  • Casas L, Mantell C, Rodríguez M et al (2008) Supercritical fluid extraction of bioactive compounds from sunflower leaves with carbon dioxide and water on a pilot plant scale. J Supercrit Fluids 45:37–42

    Article  CAS  Google Scholar 

  • Casas L, Mantell C, Rodríguez M et al (2009) Extraction of natural compounds with biological activity from sunflower leaves using supercritical carbon dioxide. Chem Eng J 152:301–306

    Article  CAS  Google Scholar 

  • Casida JE (1980) Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect 34:189–202

    Article  PubMed  CAS  Google Scholar 

  • Castillo RD, Luisa M, Santa-María G et al (2003) A comparative study of the ability of different techniques to extract menthol from Mentha piperita. J Chromatogr Sci 41:385–389

    Google Scholar 

  • Catchpole OJ, Grey JB, Mitchell KA, Lan JS (2004) Supercritical antisolvent fractionation of propolis tincture. J Supercrit Fluids 29:97–106

    Article  CAS  Google Scholar 

  • Chen M, Christensen SB, Blom J et al (1993) Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob Agents Chemother 37:2550–2556

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Theander TG, Christensen SB et al (1994) Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother 38:1470–1475

    Article  PubMed  CAS  Google Scholar 

  • Cocero MJ, Martín Á, Mattea F, Varona S (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555

    Article  CAS  Google Scholar 

  • Costa P, Grosso C, Gonçalves S et al (2012) Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L’Hér. Food Chem 135:112–121

    Article  CAS  Google Scholar 

  • D’Andrea A, Aliboni A, De Santis A et al (2007) SFE of Derris elliptica (Wallich) Benth. roots: influence of process parameters on yield and purity of rotenone. J Supercrit Fluids 42:330–333

    Article  CAS  Google Scholar 

  • Darabi HR, Mohandessi S, Balavar Y et al (2011) Clove bud oil: an efficient, economical and widely available oil for the inhibition of wheat seed germination. Environ Chem Lett 9:519–524

    Article  CAS  Google Scholar 

  • Davies OR, Lewis AL, Whitaker MJ et al (2008) Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliver Rev 60(2008):373–387

    Article  CAS  Google Scholar 

  • del Valle JM, Mena C, Budinich M (2008) Extraction of garlic with supercritical CO2 and conventional organic solvents. Braz J Chem Eng 25:532–542

    Article  Google Scholar 

  • Della Porta G, Reverchon E (2002) Supercritical fluids extraction and fractionation of pyrethrins from pyrethrum. In: Bertucco A (ed) Fourth international symposium on high pressure process technology and chemical engineering, Venice, p 223

  • Della Porta G, Taddeo R, D’Urso E, Reverchon E (1998) Isolation of clove bud and star anise essential oil by supercritical CO2 extraction. LWT Food Sci Technol 31:454–460

    Article  CAS  Google Scholar 

  • Della Porta G, Falco N, Reverchon E (2010) NSAID drugs release from injectable microspheres produced by supercritical fluid emulsion extraction. J Pharm Sci 99:1484–1499

    Article  PubMed  CAS  Google Scholar 

  • Della Porta G, Campardelli R, Falco N, Reverchon E (2011) PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts. J Pharm Sci 100:4357–4367

    Article  CAS  Google Scholar 

  • Desai KGH, Jin Park H (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Diaz-Cruz MS, Barcelo D (2008) Trace organic chemicals contamination in ground water recharge. Chemosphere 72:333–342

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Maroto MC, Pérez-Coello MS, Cabezudo MD (2002) Supercritical carbon dioxide extraction of volatiles from spices: comparison with simultaneous distillation–extraction. J Chromatogr A 947:23–29

    Article  PubMed  Google Scholar 

  • Díez-Municio M, Montilla A, Herrero M et al (2011) Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids 57:73–79

    Article  CAS  Google Scholar 

  • Domingo C, Berends E, van Rosmalen GM (1997) Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. J Supercrit Fluids 10:39–55

    Article  CAS  Google Scholar 

  • Dou H, Shi J, Chen W (2010) Study on technology of supercritical fluid extraction of white pepper. Zhongguo Tiaoweipin 35:63–67

    CAS  Google Scholar 

  • Du T, Shupe TF, Hse CY (2010) Antifungal activities of three supercritical fluid extracted cedar oils. Holzforsch 65:277–284

    CAS  Google Scholar 

  • Dunford NT, Temelli F (1997) Extraction conditions and moisture content of canola flakes as related to lipid composition of supercritical CO2 extracts. J Food Sci 62:155–159

    Article  CAS  Google Scholar 

  • Elizondo E, Moreno E, Cabrera I et al (2011) Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl Sci 104:1–52

    Article  PubMed  CAS  Google Scholar 

  • European Commission (1991) Council Regulation No 2092/91 on organic production of agricultural products and indication referring thereto on agricultural products and foodstuffs, Luxembourg

  • European Commission (2007) Council Regulation No 834/2007 on organic production and labelling or organic products, Luxembourg

  • Fernández-Ronco MP, Gracia I, De Lucas A, Rodríguez JF (2011) Measurement and modeling of the high-pressure phase equilibria of CO2-oleoresin in Capsicum. J Supercrit Fluids 57:112–119

    Article  CAS  Google Scholar 

  • Ferreira SRS, Nikolov ZL, Doraiswamy LK et al (1999) Supercritical fluid extraction of black pepper (Piper nigrun L.) essential oil. J Supercrit Fluids 14:235–245

    Article  CAS  Google Scholar 

  • Firestone D (1998) AOCS. Official method am 3-96. Oil in oilseeds: supercritical fluid extraction. Official methods and recommended practices of the AOCS

  • Floris T, Filippino G, Scrugli S et al (2010) Antioxidant compounds recovery from grape residues by a supercritical antisolvent assisted process. J Supercrit Fluids 54:165–170

    Article  CAS  Google Scholar 

  • García-Risco MR, Hernández EJ, Vicente G et al (2011a) Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves. J Supercrit Fluids 55:971–976

    Article  CAS  Google Scholar 

  • García-Risco MR, Vicente G, Reglero G, Fornari T (2011b) Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. J Supercrit Fluids 55:949–954

    Article  CAS  Google Scholar 

  • Gearhart JA, Garwin L (1976) ROSE process improves resid feed. Hydrocarbon Process 55:125–128

    Google Scholar 

  • Geng Y, Liu J, Lv R et al (2007) An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Sep Purif Technol 57:237–241

    Article  CAS  Google Scholar 

  • Ghasemi E, Yamini Y, Bahramifar N, Sefidkon F (2007) Comparative analysis of the oil and supercritical CO2 extract of Artemisia sieberi. J Food Eng 79:306–311

    Article  CAS  Google Scholar 

  • Glišić SB, Mišić DR, Stamenić MD et al (2007) Supercritical carbon dioxide extraction of carrot fruit essential oil: chemical composition and antimicrobial activity. Food Chem 105:346–352

    Article  CAS  Google Scholar 

  • Gomes PB, Mata VG, Rodrigues AE (2007) Production of rose geranium oil using supercritical fluid extraction. J Supercrit Fluids 41:50–60

    Article  CAS  Google Scholar 

  • Gonzalez Coloma A, Cabrera R, Socorro Monzón AR, Fraga BM (1993) Persea indica as a natural source of the insecticide ryanodol. Phytochem 34:397–400

    Article  CAS  Google Scholar 

  • Gonzalez Coloma A, Burillo J, Urieta JS et al (2012) Method for extracting bioinsecticide derivatives from the plant Artemisia absinthium L. WO2012035187

  • Goto M, Sato M, Hirose T (1993) Extraction of peppermint oil by supercritical carbon dioxide. J Chem Eng Jpn 26:401–407

    Article  CAS  Google Scholar 

  • Grosso C, Coelho JA, Urieta JS et al (2010a) Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction. J Agric Food Chem 58:11007–11013

    Article  CAS  Google Scholar 

  • Grosso C, Figueiredo AC, Burillo J et al (2010b) Composition and antioxidant activity of Thymus vulgaris volatiles: comparison between supercritical fluid extraction and hydrodistillation. J Sep Sci 33:2211–2218

    Article  PubMed  CAS  Google Scholar 

  • Grüner S, Otto F, Weinreich B (2003) Herstellung von flüssigkeitsgetränkten Partikeln mit der CPF-Technologie. Chem Ing Tech 75:690–693

    Article  Google Scholar 

  • Guan W, Li S, Yan R et al (2007) Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem 101:1558–1564

    Article  CAS  Google Scholar 

  • Han X, Poliakoff M (2012) Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chem Soc Rev 41:1428–1436

    Article  PubMed  CAS  Google Scholar 

  • Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Ye Z, Chen W et al (2008) Supercritical CO2 extraction and component analysis of essential oil from Hydrocotyle wilfordi and preliminary study of its insecticidal activity. Zhiwu Ziyuan Yu Huanjing Xuebao 17:27–30

    CAS  Google Scholar 

  • Huang J, Zhou L, Xu H, Yang X (2006) Effects of extraction of rotenone from Tephrosia vogelii hook. F with supercritical fluid CO2. Huazhong Nongye Daxue Xuebao 1:43–45

    Google Scholar 

  • Hui W, Zhixiong Z, Wei W et al (2009) Insecticidal synergist. China Patent 200910111488

  • Imdorf A, Bogdanov S, Ochoa RI, Calderone NW (1999) Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 30:20

    Article  Google Scholar 

  • Ismadji S, Ju Y-H, Soetaredjo FE, Ayucitra A (2011) Solubility of azadirachtin in supercritical carbon dioxide at several temperatures. J Chem Eng Data 110429144739054

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic J, Misic D, Zizovic I, Ristic M (2012) In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control 25:110–116

    Article  Google Scholar 

  • Johnson S, Morgan ED (1997) Supercritical fluid extraction of oil and triterpenoids from Neem seeds. Phytochem Anal 8:228–232

    Article  CAS  Google Scholar 

  • Jonsson N, Piper E. (2007) Integrated control programs for ticks on cattle. UQ Printery, The University of Queensland

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219

    Article  CAS  Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 204. Springer, New York, pp 1–132

    Google Scholar 

  • Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405

    Article  CAS  Google Scholar 

  • Kiriamiti H, Camy S, Gourdon C, Condoret J-S (2003a) Supercritical carbon dioxide processing of pyrethrum oleoresin and pale. J Agric Food Chem 51:880–884

    Article  PubMed  CAS  Google Scholar 

  • Kiriamiti HK, Camy S, Gourdon C, Condoret JS (2003b) Pyrethrin extraction from pyrethrum flowers using carbon dioxide. J Supercrit Fluids 26:193–200

    Article  CAS  Google Scholar 

  • Lai S, Locci E, Piras A et al (2003) Imazalil-cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohyd Res 338:2227–2232

    Article  CAS  Google Scholar 

  • Landau SY, Provenza FD, Gardner DR et al (2009) Neem-tree (Azadirachta indica Juss.) extract as a feed additive against the American dog tick (Dermacentor variabilis) in sheep (Ovis aries). Vet Parasitol 165:311–317

    Article  PubMed  CAS  Google Scholar 

  • Langa E, Cacho J, Palavra AMF et al (2009a) The evolution of hyssop oil composition in the supercritical extraction curve: modelling of the oil extraction process. J Supercrit Fluids 49:37–44

    Article  CAS  Google Scholar 

  • Langa E, Della Porta G, Palavra AMF et al (2009b) Supercritical fluid extraction of Spanish sage essential oil: optimization of the process parameters and modelling. J Supercrit Fluids 49:174–181

    Article  CAS  Google Scholar 

  • Lapierre D, Moro J (2002) Five past midnight in Bhopal: the epic story of the world’s deadliest industrial disaster, 1st edn. Warner Books, New York

    Google Scholar 

  • Lester E, Blood P, Denyer J et al (2006) Reaction engineering: the supercritical water hydrothermal synthesis of nano-particles. J Supercrit Fluids 37:209–214

    Article  CAS  Google Scholar 

  • Li G, Chen A, Ma Z et al (2005) Study on supercritical fluid extraction technique of rotenone from Tephrosia vogelii. Nogyaoxue Xuebao 2:144–149

    Google Scholar 

  • Li L, Lee W, Lee WJ et al (2010) Extraction of allyl isothiocyanate from wasabi (Wasabia japonica Matsum) using supercritical carbon dioxide. Food Sci Biotechnol 19:405–410

    Article  CAS  Google Scholar 

  • Li D, Wang Z, Zhang Y (2011) Antifungal activity of extracts by supercritical carbon dioxide extraction from roots of Echinacea angustifolia and analysis of their constituents using gas chromatography-mass spectrometry (GC-MS). J Med Plants Res 5:5605–5610

    CAS  Google Scholar 

  • Liang W, Cheng J, Ma L et al (2012) Componential analysis and acaricidal activities of Stellera chamaejasme extracts by supercritical fluid extraction. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering. Springer, Berlin, pp 643–652

  • Librando V, Hutzinger O, Tringali G, Aresta M (2004) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from marine sediments and soil samples. Chemosphere 54:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Louey JP, Shaeffer H, Petersen N, Salotti D (2001) Oil of catnip by supercritical fluid extraction. http://www.supercriticalfluids.com/wp-content/uploads/TN-101-Oil-of-Catnip-by-SFE1.pdf. Cited 25 Jul 2012

  • Machmudah S, Izumi T, Sasaki M, Goto M (2009) Extraction of pungent components from Japanese pepper (Xanthoxylum piperitum DC.) using supercritical CO2. Sep Purif Technol 68:159–164

    Article  CAS  Google Scholar 

  • Marongiu B, Piras A, Porcedda S et al (2007) Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity. J Agric Food Chem 55:10022–10027

    Article  PubMed  CAS  Google Scholar 

  • Marongiu B, Piras A, Porcedda S et al (2009) Chemical and biological comparisons on supercritical extracts of Tanacetum cinerariifolium (Trevir) Sch. Bip. with three related species of chrysanthemums of Sardinia (Italy). Nat Prod Res 23:190–199

    Article  PubMed  CAS  Google Scholar 

  • Martín A, Cocero MJ (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev 60:339–350

    Article  PubMed  CAS  Google Scholar 

  • Martín A, Scholle K, Mattea F et al (2009) Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Cryst Growth Des 9:2504–2511

    Article  CAS  Google Scholar 

  • Martín A, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Eng J 4:31–41

    Article  CAS  Google Scholar 

  • Martín L, González-Coloma A, Adami R et al (2011a) Supercritical antisolvent fractionation of ryanodol from Persea indica. J Supercrit Fluids 60:16–20

    Article  CAS  Google Scholar 

  • Martín L, González-Coloma A, Díaz CE et al (2011b) Supercritical CO2 extraction of Persea indica: effect of extraction parameters, modelling and bioactivity of its extracts. J Supercrit Fluids 57:120–128

    Article  CAS  Google Scholar 

  • Martín L, Julio LF, Burillo J et al (2011c) Comparative chemistry and insect antifeedant action of traditional (Clevenger and Soxhlet) and supercritical extracts (CO2) of two cultivated wormwood (Artemisia absinthium L.) populations. Ind Crops Prod 34:1615–1621

    Article  CAS  Google Scholar 

  • Martín L, Mainar AM, González-Coloma A et al (2011d) Supercritical fluid extraction of wormwood (Artemisia absinthium L.). J Supercrit Fluids 56:64–71

    Article  CAS  Google Scholar 

  • Martín L, Liparoti S, Adami R et al (2011d) Encapsulado de biopesticidas mediante fluidos supercríticos. Paper presented in the V Reunión de Expertos en Tecnologías de Fluidos Comprimidos, Universidad de Burgos, Burgos 1517 June 2011

  • Martínez J (2007) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton

    Book  Google Scholar 

  • Medina AL, Lucero ME, Holguin FO et al (2005) Composition and antimicrobial activity of Anemopsis californica leaf oil. J Agric Food Chem 53:8694–8698

    Article  PubMed  CAS  Google Scholar 

  • Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. AAPS PharmSciTech 9:798–809

    Article  PubMed  CAS  Google Scholar 

  • Miao X, Deng K (2011) Study on supercritical CO2 extraction of the essence oil from cinnamon. Zhongguo Tiaoweipin 36:25–34

    CAS  Google Scholar 

  • Mishra AK, Dubey NK (1994) Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl Environ Microbiol 60:1101–1105

    PubMed  CAS  Google Scholar 

  • Moldão-Martins M, Palavra A, Beirão da Costa M, Bernardo-Gil M (2000) Supercritical CO2 extraction of Thymus zygis L. subsp. sylvestris aroma. J Supecrit Fluids 18:25–34

    Article  Google Scholar 

  • Montes A, Tenorio A, Gordillo MD et al (2011) Supercritical antisolvent precipitation of ampicillin in complete miscibility conditions. Ind Eng Chem Res 50:2343–2347

    Article  CAS  Google Scholar 

  • Moreno T, García-Serna J, Cocero MJ (2011) Decomposition reaction of H2O2 over Pd/C catalyst in an aqueous medium at high pressure: detailed kinetic study and modelling. J Supercrit Fluids 57:227–235

    Article  CAS  Google Scholar 

  • Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105

    Article  PubMed  CAS  Google Scholar 

  • Morre J, Tenorio MJ, Torralvo MJ et al (2011) Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide. J Supercrit Fluids 56:213–222

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Patel CKR (2009) Purification of phytochemicals by gas antisolvent precipitation with carbon dioxide. Indian Chem Eng 51:111–118

    CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  PubMed  CAS  Google Scholar 

  • Otterbach A, Wenclawiak BW (1999) Ultrasonic/Soxhlet/supercritical fluid extraction kinetics of pyrethrins from flowers and allethrin from paper strips. Fresenius J Anal Chem 365:472–474

    Article  CAS  Google Scholar 

  • Pan WHT, Chang C-C, Su T-T et al (1995) Preparative supercritical fluid extraction of pyrethrin I and II from pyrethrum flower. Talanta 42:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Pandey R, Kalra A, Tandon S et al (2000) Essential oils as potent source of nematicidal compounds. J Phytopathol 148:501–502

    Article  CAS  Google Scholar 

  • Pavela R, Sajfrtová M, Sovová H, Bárnet M (2008) The insecticidal activity of Satureja hortensis L. extracts obtained by supercritical fluid extraction and traditional extraction techniques. Appl Entomol Zool 43:377–382

    Article  CAS  Google Scholar 

  • Pavela R, Sajfrtová M, Sovová H et al (2009) The effects of extracts obtained by supercritical fluid extraction and traditional extraction techniques on larvae Leptinotarsa decemlineata SAY. J Essent Oil Res 21:367–373

    Article  CAS  Google Scholar 

  • Pavela R, Sajfrtová M, Sovová H et al (2010) The insecticidal activity of Tanacetum parthenium (L.) Schultz Bip. extracts obtained by supercritical fluid extraction and hydrodistillation. Ind Crops Prod 31:449–454

    Article  Google Scholar 

  • Pederssetti MM, Palú F, da Silva EA et al (2011) Extraction of canola seed (Brassica napus) oil using compressed propane and supercritical carbon dioxide. J Food Eng 102:189–196

    Article  CAS  Google Scholar 

  • Pemsel M, Schwab S, Scheurer A et al (2010) Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J Supercrit Fluids 53:174–178

    Article  CAS  Google Scholar 

  • Perakis C, Louli V, Magoulas K (2005) Supercritical fluid extraction of black pepper oil. J Food Eng 71:386–393

    Article  Google Scholar 

  • Pereira CG, Meireles MAA (2009) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  • Pereira CG, Marques MOM, Barreto AS et al (2004) Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2 + ethanol: an evaluation of the process variables and the raw material origin. J Supercrit Fluids 30:51–61

    Article  CAS  Google Scholar 

  • Pérez E, Martín L, Rubio C et al (2010) Encapsulation of α-tocopheryl acetate into zeolite Y for textile application. Ind Eng Chem Res 49:8495–8500

    Article  CAS  Google Scholar 

  • Peterson A, Machmudah S, Roy BC et al (2006) Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide. J Chem Technol Biotechnol 81:167–172

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  PubMed  CAS  Google Scholar 

  • Reverchon E (1997) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:1–37

    Article  CAS  Google Scholar 

  • Reverchon E (2002) Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution. Ind Eng Chem Res 41:2405–2411

    Article  CAS  Google Scholar 

  • Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22

    Article  CAS  Google Scholar 

  • Reverchon E, Antonacci A (2007) Drug–polymer microparticles produced by supercritical assisted atomization. Biotechnol Bioeng 97:1626–1637

    Article  PubMed  CAS  Google Scholar 

  • Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I, Torino E (2007) Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J Supercrit Fluids 43:126–138

    Article  CAS  Google Scholar 

  • Reverchon E, Adami R, Cardea S, Della Porta G (2009) Supercritical fluids processing of polymers for pharmaceutical and medical applications. J Supercrit Fluids 47:484–492

    Article  CAS  Google Scholar 

  • Rodrigues MA, Padrela L, Geraldes V et al (2011) Theophylline polymorphs by atomization of supercritical antisolvent induced suspensions. J Supercrit Fluids 58:303–312

    Article  CAS  Google Scholar 

  • Rossini C, Castillo L, González A (2007) Plant extracts and their components as potential control agents against human head lice. Phytochem Rev 7:51–63

    Article  CAS  Google Scholar 

  • Rozzi NL, Phippen W, Simon JE, Singh RK (2002) Supercritical fluid extraction of essential oil components from lemon-scented botanicals. LWT Food Sci Technol 35:319–324

    Article  CAS  Google Scholar 

  • Rubio-Rodriguez N, De Diego SM, Beltran S et al (2008) Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. J Supercrit Fluids 47:215–226

    Article  CAS  Google Scholar 

  • Rubio-Rodríguez N, de Diego SM, Beltrán S et al (2012) Supercritical fluid extraction of fish oil from fish by-products: a comparison with other extraction methods. J Food Eng 109:238–248

    Article  CAS  Google Scholar 

  • Ruiz-Rodríguez A, Fornari T, Jaime L et al (2012) Supercritical CO2 extraction applied toward the production of a functional beverage from wine. J Supercrit Fluids 61:92–100

    Article  CAS  Google Scholar 

  • Saldaña MDA, Nagpal V, Guigard SE (2005) Remediation of contaminated soils using supercritical fluid extraction: a review (1994–2004). Environ Technol 26:1013–1032

    Article  PubMed  Google Scholar 

  • Sankar KU (1989) Studies on the physicochemical characteristics of volatile oil from pepper (Piper nigrum) extracted by supercritical carbon dioxide. J Sci Food Agric 48:483–493

    Article  CAS  Google Scholar 

  • Santos DT, Meireles MAM (2011) Extraction of volatile oils by supercritical fluid extraction: patent survey. Recent Pat Eng 5:17–22

    Article  CAS  Google Scholar 

  • Santoyo S, Cavero S, Jaime L et al (2005) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J Food Prot 68:790–795

    PubMed  CAS  Google Scholar 

  • Santoyo S, Cavero S, Jaime L et al (2006) Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters. J Food Prot 69:369–375

    PubMed  CAS  Google Scholar 

  • Silva CF, Moura FC, Mendes MF, Pessoa FLP (2011) Extraction of citronella (Cymbopogon nardus) essential oil using supercritical CO2: experimental data and mathematical modeling. Braz J Chem Eng 28:343–350

    Article  CAS  Google Scholar 

  • Sims M (1981) Liquid carbon dioxide extraction of pyrethrins. US patent 4281171

  • Sosa MV, Rodríguez-Rojo S, Mattea F et al (2011) Green tea encapsulation by means of high pressure antisolvent coprecipitation. J Supercrit Fluids 56:304–311

    Article  CAS  Google Scholar 

  • Sovová H, Aleksovski SA, Bocevska M, Stateva RP (2006) Supercritical fluid extraction of essential oils: results of joint research. Chem Ind Chem Eng Q 12:168–174

    Article  Google Scholar 

  • Stahl E, Schutz E (1980) Extraction of natural compounds with supercritical gases.3. Pyrethrum extracts with liquefied and supercritical carbon-dioxide. Planta Med 40:12–21

    Article  CAS  Google Scholar 

  • Sunarso J, Ismadji S (2009) Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review. J Hazard Mater 161:1–20

    Article  PubMed  CAS  Google Scholar 

  • Taki S, Badens E, Charbit G (2001) Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. J Supercrit Fluids 21:61–70

    Article  CAS  Google Scholar 

  • Tanner CM, Kamel F, Ross GW et al (2011) Rotenone, Paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872

    Article  PubMed  CAS  Google Scholar 

  • Tatsuro O, Mitsukatsu Y (1996) Production of cis-abienol-containing material. JP Patent 08-53382 A

  • Taylor LT (1996) Supercritical fluid extraction, 1st edn. Wiley, New York

    Google Scholar 

  • The 2010 Worldwide Biopesticides Market Summary (Volume 1 of a 6 Volume Series)—market research reports—research and markets. http://www.researchandmarkets.com/reportinfo.asp?report_id=1246135&t=d&cat_id=. Accessed 27 Apr 2011

  • Tongwei A, Qingzhong C, Dan L (2010) Method for extracting eugenol in velvety lilac flower leaves. CN Patent 20101168904 20100512

    Google Scholar 

  • Tonthubthimthong P, Chuaprasert S, Douglas P, Luewisutthichat W (2001) Supercritical CO2 extraction of nimbin from neem seeds—an experimental study. J Food Eng 47:289–293

    Article  Google Scholar 

  • Tonthubthimthong P, Douglas PL, Douglas S et al (2004) Extraction of nimbin from neem seeds using supercritical CO2 and a supercritical CO2-methanol mixture. J Supercrit Fluids 30:287–301

    Article  CAS  Google Scholar 

  • Tsutsumi C, Sakafuji J, Okada M et al (2009) Study of impregnation of poly-lactide-caprolactone copolymers with useful compounds in supercritical carbon dioxide. J Mater Sci 44:3533–3541

    Article  CAS  Google Scholar 

  • Tsutsumi C, Fukukawa N, Sakafuji J et al (2011) Impregnation of poly(L-lactide-ran-cyclic carbonate) copolymers with useful compounds with supercritical carbon dioxide. J Appl Polym Sci 121:1431–1441

    Article  CAS  Google Scholar 

  • Tsutsumi C, Hara T, Fukukawa N et al (2012) Incorporation of l-lactide random copolymers with Japanese cypress oil (α-pinene) using supercritical carbon dioxide. Green Chem 14:1211–1219

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1947) Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) (P.L. 80-104) 7 U.S.C. § 136 et seq

  • US Environmental Protection Agency (2012) Pesticides: regulating pesticides. http://www.epa.gov/oppbppd1/biopesticides/. Cited 25 July 2012

  • Vági E, Simándi B, Suhajda Á, Héthelyi É (2005) Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res Int 38:51–57

    Article  CAS  Google Scholar 

  • Varona S, Kareth S, Martín Á, Cocero MJ (2010) Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. J Supercrit Fluids 54:369–377

    Article  CAS  Google Scholar 

  • Varona S, Rodríguez-Rojo S, Martín A et al (2011) Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. J Supercrit Fluids 58:313–319

    Article  CAS  Google Scholar 

  • Varona S, Rodríguez-Rojo S, Martín A et al (2013) Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Ind Crops Prod 42:243–250

    Article  CAS  Google Scholar 

  • Verma A, Hartonen K, Riekkola M-L (2008) Optimisation of supercritical fluid extraction of indole alkaloids from Catharanthus roseus using experimental design methodology—comparison with other extraction techniques. Phytochem Anal 19:52–63

    Article  PubMed  CAS  Google Scholar 

  • Visentin A, Rodríguez-Rojo S, Navarrete A et al (2012) Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J Food Eng 109:9–15

    Article  CAS  Google Scholar 

  • Visentín A, Cismondi M, Maestri D (2011) Supercritical CO2 fractionation of rosemary ethanolic oleoresins as a method to improve carnosic acid recovery. Innov Food Sci Emerg 12:142–145

    Article  CAS  Google Scholar 

  • Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47:556–565

    Article  CAS  Google Scholar 

  • Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Liu Y, Liu X et al (1994) Extraction and separation of citronella oil by supercritical carbon dioxide. Tianran Chanwu Yanjiu Yu Kaifa 6:42–49

    CAS  Google Scholar 

  • Wu H, Zhang G-A, Zeng S, Lin K (2009) Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest ManageSci 65:1003–1008

    Article  CAS  Google Scholar 

  • Yamamoto I (1970) Mode of action of pyrethroids, nicotinoids, and rotenoids. Annu Rev Entomol 15:257–272

    Article  CAS  Google Scholar 

  • Yazdani F, Mafi M, Farhadi F et al (2005) Supercritical CO2 extraction of essential oil from clove bud: effect of operation conditions on the selective isolation of eugenol and eugenyl acetate. Z Naturforsch 60b:1197–1201

    Google Scholar 

  • Zahedi G, Elkamel A, Lohi A (2010a) Genetic algorithm optimization of supercritical fluid extraction of nimbin from neem seeds. J Food Eng 97:127–134

    Article  CAS  Google Scholar 

  • Zahedi G, Elkamel A, Lohi A, Hatami T (2010b) Optimization of supercritical extraction of nimbin from neem seeds in presence of methanol as co-solvent. J Supercrit Fluids 55:142–148

    Article  CAS  Google Scholar 

  • Zermane A, Meniai A-H, Barth D (2010) Supercritical CO2 extraction of essential oil from Algerian Rosemary (Rosmarinus officinalis L.). Chem Eng Technol 33:489–498

    Article  CAS  Google Scholar 

  • Zhang W, Zhang H, Zhang Q et al (2011) Molecularly imprinted polymers prepared by precipitation polymerization and used for inducing crystallization of oleanolic acid in supercritical CO2. Sep Purif Technol 81:411–417

    Article  CAS  Google Scholar 

  • Zhao S, Liang H (2006) Study of extraction of cinnamon oils from the bark of Cinnamomum cassia presl by supercritical carbon dioxide. Pol J Chem 80:99–105

    CAS  Google Scholar 

  • Zhao C, Wang L, Zu Y et al (2011) Micronization of Ginkgo biloba extract using supercritical antisolvent process. Powder Technol 209:73–80

    Article  CAS  Google Scholar 

  • Zhiyi L, Xuewu L, Shuhua C et al (2006) An experimental and simulating study of supercritical CO2 extraction for pepper oil. Chem Eng Process 45:264–267

    Article  CAS  Google Scholar 

  • Zhou R, Li S (2009) Supercritical carbon dioxide and co-solvent extractions of estradiol and progesterone from antler velvet. J Food Compos Anal 22:72–78

    Article  CAS  Google Scholar 

  • Zosel K (1981) Process for the decaffeination of coffee. US Patent 247570

Download references

Acknowledgments

Authors are grateful for financial support from MICINN-FEDER (CTQ2009-14629-C02-01 and CTQ2009-14629-C02-02), from Gobierno de Aragón-Fondo Social Europeo (group E52) and from Gobierno de Aragón-La Caixa-Sumalsa (GA-LC-042/2010). L. M has been supported by Gobierno de Aragón and Universidad de Zaragoza (GA-LC-042/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Urieta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, L., Marqués, J.L., González-Coloma, A. et al. Supercritical methodologies applied to the production of biopesticides: a review. Phytochem Rev 11, 413–431 (2012). https://doi.org/10.1007/s11101-012-9268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9268-y

Keywords

Navigation