Skip to main content
Log in

Use of natural products in the crop protection industry

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2010

Abstract

Nature is a rich source of compounds exhibiting biological activity against weeds, plant diseases, insects and mites. Many of these natural products have complex structures, insufficient biological activity and low persistence under field conditions. Thus the share of natural products being used as active ingredients per se in today’s crop protection market is relatively small. In some cases the natural products have been further modified to provide semi-synthetic derivatives with improved biological properties. More importantly, natural products served as lead structures inspiring chemists to prepare new synthetic analogues with often improved biological activity, simplified structures, increased safety towards humans and the environment and an optimized persistence. This article is not an extensive review of natural products in crop protection, but it discusses some examples illustrating the use of natural products per se, their use as starting materials to prepare semi-synthetic products, and their use as lead structures to prepare new synthetic products which may in the end bear no resemblance to the initial lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurines—new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30:806–810

    PubMed  CAS  Google Scholar 

  • Anke T, Hecht H-J, Schramm G, Steglich W (1978) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117

    Google Scholar 

  • Anke T, Schramm G, Schwalge B, Steffan B, Steglich W (1984) Antibiotika aus Basidiomyceten. XX. Synthese von Strobilurin A und Revision der Stereochemie der natürlichen Strobilurine. Liebigs Ann Chem (9):1616–1625

  • Anzeveno PB, Green FR III (2002) Rhamnose replacement analogs of spinosyn A. In: Baker DR, Fenyes JG, Lahm GP, Selby TP, Stevenson TM (eds) Synthesis and chemistry of agrochemicals VI. American Chemical Society, Washington, DC, pp 262–276

    Google Scholar 

  • Bartlett DW, Clough JM, Godfrey CRA, Godwin JR, Hall AA, Heaney SP, Maund SJ (2001) Understanding the strobilurine fungicides. Pestic Outlook 12:143–148

    Article  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurine fungicides. Pest Manag Sci 58:649–662

    Article  PubMed  CAS  Google Scholar 

  • Beaudegnies R, Edmunds AJF, Fraser TEM, Hall RG, Hawkes TR, Mitchell G, Schaetzer J, Wendeborn S, Wibley J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors - A review of the triketone chemistry story from a Syngenta perspective. Bioorg Med Chem 17:4134–4152

    Article  PubMed  CAS  Google Scholar 

  • Beautement K, Clough JM, De Fraine PJ, Godfrey CRA (1991) Fungicidal β-methoxyacrylates: from natural products to novel synthetic agricultural fungicides. Pestic Sci 31:499–519

    Article  CAS  Google Scholar 

  • Becker WF, von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with an E-β-methoxyacrylate system as common structural element. FEBS Letts 132:329–333

    Article  CAS  Google Scholar 

  • Clough JM (1993) The strobilurins, oudemansins, and myxothiazols, fungicidal derivatives of β-methoxyacrylic acid. Nat Prod Rep 10:565–574

    Article  PubMed  CAS  Google Scholar 

  • Clough JM, Godfrey CRA (1998) The strobilurine fungicides. In: Hutson D, Miyamoto J (eds) Fungicidal activity. Wiley, Chichester, pp 109–148

    Google Scholar 

  • Clough JM, De Fraine PJ, Fraser TEM, Godfrey CRA (1992) Fungicidal β-methoxyacrylates. From natural products to novel synthetic agricultural fungicides. In: Baker DA, Fenyes JG, Steffens JJ (eds) ACS symposium series, 504 (Synth Chem Agrochem III). American Chemical Society, Washington, DC, pp 372–383

    Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  PubMed  CAS  Google Scholar 

  • Crouse GD (1998) Pesticide leads from nature. Chemtech 28:36–48

    CAS  Google Scholar 

  • Crouse GD, Sparks TC, DeAmicis CV, Kirst HA, Martynow JG, Creemer LC, Worden TV, Anzeveno PB (1999) Chemistry and insecticidal activity of the spinosyns. In: Brooks GT, Roberts TR (eds) Pesticide chemistry and bioscience: the food-environmental challenge. Proceedings of 9th IUPAC congress on pesticide chemistry. Royal Chemical Society, London, pp 155–166

    Google Scholar 

  • Crouse GD, Dripps JE, Orr N, Sparks TC (2007) DE-175 (Spinetoram), a new semi-synthetic spinosyn in development. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley, Weinheim, pp 1013–1031

    Google Scholar 

  • Crowley PJ, Aspinall IH, Gillen K, Godfrey CRA, Devillers IM, Munns GR, Sageot OA, Swanborough J, Worthington PA, Williams J (2003) The crocacins: novel natural products as leads for agricultural fungicides. Chimia 57:685–691

    Article  CAS  Google Scholar 

  • Cvetovich RJ, Kelly DH, DiMichele LM, Shuman RF, Grabowski EJJ (1994) Synthesis of 4″-epi-amino-4″-deoxyavermectins B1. J Org Chem 59:7704–7708

    Article  CAS  Google Scholar 

  • Dayan FE, Cantrell CL O, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • Dobler MR, Brune I, Cederbaum F, Cooke NG, Diorazio LJ, Hall RG, Irving E (2001) Total synthesis of (±)-rocaglamide and some aryl analogues. Tetrahedron Lett 42:8281–8284

    Article  CAS  Google Scholar 

  • Dybas RA, Babu JR (1988) 4″-deoxy-4″methylamino-4″-epiavermectin B1 hydrochloride (MK-243): a novel avermectin insecticide for crop protection. In: British Crop Prot Conf. Pests and Diseases, British Crop Protection Council, Croydon, pp 57–64

    Google Scholar 

  • Edmunds AJF (2007) Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors: triketones. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 1. Wiley, Weinheim, pp 221–243

    Google Scholar 

  • Gray RA, Rusay RJ, Tseng CK, Stauffer Chemical Co., now Syngenta (1980) 1-Hydroxy-2-(alkylketo)-4,4,6,6-tetramethylcyclohexen-3,5-diones. US Patent 4 202 840

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Janprasert J, Satasook S, Sukumalanand P, Champagne DE, Isman MB, Wiriyachitra P, Towers GHN (1992) Rocaglamide, a natural benzofuran insecticide from Aglaia odorata. Phytochemistry 32:67–69

    Article  CAS  Google Scholar 

  • Jansen R, Washausen P, Kunze B, Reichenbach Hans, Höfle G (1999) Antibiotics from gliding bacteria. Part 83. The crocacins, novel antifungal and cytotoxic antibiotics from Chondromyces crocatus and Chondromyces pediculatus. Isolation and structure elucidation. Eur J Org Chem (20):1085–1089

  • Jansson RK, Dybas RA (1998) Avermectins: biochemical mode of action, biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action—mechanisms and applications. Springer, Berlin, pp 153–170

    Google Scholar 

  • King ML, Chiang CC, Ling HC, Fujita E, Ochiai M, McPhail AT (1982) X-ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun (5):1150–1151

  • Kunze B, Jansen R, Höfle G, Reichenbach H (1994) Antibiotics from gliding bacteria. 58. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (Myxobacteria): production, isolation, physico-chemical and biological properties. J Antibiot 47:881–886

    PubMed  CAS  Google Scholar 

  • Lee DL, Knudsen CG, Michaely WJ, Chin H-L, Nguyen NH, Carter CG, Cromartie TH, Lake BH, Shribbs JM, Fraser T (1998) The structure-activity relationships of the triketone class of HPPD herbicides. Pestic Sci 54:377–384

    Article  CAS  Google Scholar 

  • McDougall P (2009) Industry overview—2008 market

  • Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120–128

    Article  PubMed  CAS  Google Scholar 

  • Molleyres L-P, Rindlisbacher A, Winkler T, Kumar V (1999) Insecticidal natural products: new rocaglamide derivatives from Aglaia roxburghiana. Pestic Sci 55:486–503

    Article  Google Scholar 

  • Mrozik H (1994) Advances in research and development of avermectins. In: Hedin PA, Menn JJ, Hollingworth RM (eds) ACS symposium series, 551 (natural and engineered pest management agents). American Chemical Society, Washington, DC, pp 54–73

    Google Scholar 

  • Pachlatko JP (1998) Natural products in crop protection. Chimia 52:29–47

    CAS  Google Scholar 

  • Pallett KE, Cramp SM, Little JP, Veerasekaran P, Crudace AJ, Slater AE (2001) Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag Sci 57:133–142

    Article  PubMed  CAS  Google Scholar 

  • Pitterna T (2007) Chloride channel activators/New natural products (Avermectins and Milbemycins). In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley, Weinheim, pp 1069–1088

    Google Scholar 

  • Pitterna T, Cassayre J, Hüter OF, Jung PMJ, Maienfisch P, Murphy Kessabi F, Quaranta L, Tobler H (2009) New ventures in the chemistry of avermectins. Bioorg Med Chem 17:4085–4095

    Article  PubMed  CAS  Google Scholar 

  • Sauter H (2007) Strobilurins and other complex III inhibitors. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 2. Wiley, Weinheim, pp 457–495

    Google Scholar 

  • Sauter H, Ammermann E, Benoit R, Brand S, Gold RE, Grammenos W, Kohle H, Lorenz G, Müller B, Röhl F, Schirmer U, Speakman JB, Wenderoth B, Wingert H (1995) Mitochondrial respiration as a target for antifungals: lessons from research on strobilurins. In: Dixon GK, Copping LG, Hollomon DW (eds) Antifungal agents—discovery and mode of action. Bios Scientific Publishers, Oxford, pp 173–191

    Google Scholar 

  • Sauter H, Ammermann E, Roehl F (1996) Strobilurines—from natural products to a new class of fungicides. In: Copping LC (ed) Crop protection agents from nature. Royal Society of Chemistry, Cambridge, pp 50–81

    Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed 38:1329–1349

    Article  CAS  Google Scholar 

  • Schultz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoylcyclohexane-1, 3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318:162

    Article  Google Scholar 

  • Sparks TC, Crouse GD, Dripps JE, Anzeveno P, Martynow J, DeAmicis CV, Gifford J (2008) Neural network-based QSAR and insecticide discovery: spinetoram. J Comput Aided Mol Des 22:393–401

    Article  PubMed  CAS  Google Scholar 

  • Tomlin C (ed) (2006) The pesticide manual, 14th edn. British Crop Protection Council, Hampshire

    Google Scholar 

Download references

Acknowledgments

I wish to acknowledge all colleagues at Syngenta who contributed with useful discussions or who helped with revisions of the manuscript. Particular thanks go to Andrew J. F. Edmunds, Christopher R. A. Godfrey, Roger G. Hall, Fiona Murphy Kessabi and T. Pitterna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottmar Franz Hüter.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11101-010-9193-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüter, O.F. Use of natural products in the crop protection industry. Phytochem Rev 10, 185–194 (2011). https://doi.org/10.1007/s11101-010-9168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9168-y

Keywords

Navigation