Skip to main content
Log in

Production of recombinant allergens in plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

A large percentage of allergenic proteins are of plant origin. Hence, plant-based expression systems are considered ideal for the recombinant production of certain allergens. First attempts to establish production of plant-derived allergens in plants focused on transient expression in Nicotiana benthamiana infected with recombinant viral vectors. Accordingly, allergens from birch and mugwort pollen, as well as from apple have been expressed in plants. Production of house dust mite allergens has been achieved by Agrobacterium-mediated transformation of tobacco plants. Beside the use of plants as production systems, other approaches have focused on the development of edible vaccines expressing allergens or epitopes thereof, which bypasses the need of allergen purification. The potential of this approach has been convincingly demonstrated for transgenic rice seeds expressing seven dominant human T cell epitopes derived from Japanese cedar pollen allergens. Parallel to efforts in developing recombinant-based diagnostic and therapeutic reagents, different gene-silencing approaches have been used to decrease the expression of allergenic proteins in allergen sources. In this way hypoallergenic ryegrass, soybean, rice, apple, and tomato were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Art v:

Artemisia vulgaris

Bet v:

Betula verrucosa

CD:

Circular dichroism

Cry j:

Cryptomera japonica

Der f:

Dermatophagoides farinae

Der p:

Dermatophagoides pteronyssinus

ELISA:

Enzyme-Linked ImmunoSorbent Assay

GFP:

Green fluorescent protein

LC:

Liquid chromatography

Lol p:

Lolium perenne

Lyc e:

Lycopersicon esculentum

Mal d:

Malus domestica

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

ns-LTP:

Non-specific Lipid Transfer Protein

PAGE:

Polyacrylamide gel electrophoresis

PDDF:

Pair distance distribution function

PEG:

Polyethylene glycol

Pen a:

Penaeus aztecus

SAXS:

Small-angle X-ray scattering

SDS:

Sodium dodecyl sulfate

SEC:

Size exclusion chromatography

T1 :

The first progeny generation of transgenic plants (T0)

Th:

T helper lymphocyte

TMV:

Tobacco mosaic virus

ZYMV:

Zucchini yellow mosaic virus

References

  • Aalberse RC, Akkerdaas J, van Ree R (2001) Cross-reactivity of IgE antibodies to allergens. Allergy 56:478–490

    PubMed  CAS  Google Scholar 

  • Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142:99–115

    PubMed  CAS  Google Scholar 

  • Andersson K, Lidholm J (2003) Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 130:87–107

    PubMed  CAS  Google Scholar 

  • Arruda LK, Vailes LD, Ferriani VP, Santos AB, Pomes A, Chapman MD (2001) Cockroach allergens and asthma. J Allergy Clin Immunol 107:419–428

    PubMed  CAS  Google Scholar 

  • Bates GW (1995). Electroporation of plant protoplasts and tissues. Methods Cell Biol 50:363–373

    PubMed  CAS  Google Scholar 

  • Baur A, Kaufmann F, Rolli H, Weise A, Luethje R, Berg B, Braun M, Baeumer W, Kietzmann M, Reski R, Gorr G (2005) A fast and reliable PEG-mediated transient expression system in plants for high level expresion of secreted recombinant proteins. J Biotechnol 119:332–342

    PubMed  CAS  Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    PubMed  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2004) Knocking out expression of plant allergen genes. Methods 32:340–345

    PubMed  CAS  Google Scholar 

  • Bhalla PL, Swoboda I, Singh MB (2001) Reduction in allergenicity of grass pollen by genetic engineering. Int Arch Allergy Immunol 124:51–54

    PubMed  CAS  Google Scholar 

  • Breiteneder H, Krebitz M, Wiedermann U, Wagner B, Essl D, Steinkellner H, Turpen TH, Ebner C, Buck D, Niggemann B, Scheiner O (2001) Rapid production of recombinant allergens in Nicotiana benthamiana and their impact on diagnosis and therapy. Int Arch Allergy Immunol 124:48–50

    PubMed  CAS  Google Scholar 

  • Breiteneder H, Wagner B (2002) Expression of allergens in E. coli and plants - benefits and drawbacks. Arbeiten aus dem Paul-Ehrlich-Institut 94:178–187

    Google Scholar 

  • Chapman MD, Wood RA (2001) The role and remediation of animal allergens in allergic diseases. J Allergy Clin Immunol 107:S414–421

    PubMed  CAS  Google Scholar 

  • Chapman MD, Smith AM, Vailes LD, Arruda LK, Dhanaraj V, Pomés A (2000) Recombinant allergens for diagnosis and therapy of allergic diseases. J Allergy Clin Immunol 106:409–418

    PubMed  CAS  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293

    CAS  Google Scholar 

  • Chirino AJ, Mire-Sluis A (2004) Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 22:1383–1391

    PubMed  CAS  Google Scholar 

  • Coutu C, Brandle JE, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE: a modular binary vector series suited for both monocot and dicot plant expression. Transgenic Res doi:10.1007/s11248-007-9066-2

  • Cromwell O, Suck R, Kahlert H, Nandy A, Weber B, Fiebig H (2004) Transition of recombinant allergens from bench of clinical application. Methods 32:300–312

    PubMed  CAS  Google Scholar 

  • Curtis MD (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vccines in plants. Trends Plant Sci 6:219–226

    PubMed  CAS  Google Scholar 

  • de Vries JE, Carballido JM, Aversa G (1999) Receptors and cytokines involved in allergic TH2 cell responses. J Allergy Clin Immunol 103:S492–496

    PubMed  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    PubMed  CAS  Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2007) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J (OnlineEarly Article; doi:10.1111/j.1467–7652.2007.00292.x)

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    PubMed  CAS  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    PubMed  CAS  Google Scholar 

  • Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53:145–151

    PubMed  CAS  Google Scholar 

  • Fernandes J, Reshef A, Patton L, Ayuso R, Reese G, Lehrer SB (2003) Immunoglobulin E antibody reactivity to the major shrimp allergen, tropomyosin, in unexposed Orthodox Jews. Clin Exp Allergy 33:956–961

    PubMed  CAS  Google Scholar 

  • Ferreira F, Hawranek T, Gruber P, Wopfner N, Mari A (2004a) Allergic cross-reactivity: from gene to the clinic. Allergy 59:243–267

    PubMed  CAS  Google Scholar 

  • Ferreira F, Wallner M, Thalhamer J (2004b) Customized antigens for desensitizing allergic patients. Adv Immunol 84:79–129

    Article  PubMed  CAS  Google Scholar 

  • Ferreira F, Wallner M, Gadermaier G, Erler A, Fritz G, Glatter O, Himly M, Briza P, van Ree R (2006) Physico-chemical characterization of candidate reference materials. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M 75–82; discussion 82–73, 100–104

  • Filipecki M, Malepszy S (2006) Unintented consequences of plant transformation: a molecular insight. J Appl Genet 47:277–286

    PubMed  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    PubMed  CAS  Google Scholar 

  • Frati F, Moingeon P, Marcucci F, Puccinelli P, Sensi L, Di Cara G, Incorvaia C (2007) Mucosal immunization application to allergic disease: sublingual immunotherapy. Allergy Asthma Proc 28:35–39

    PubMed  CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    PubMed  CAS  Google Scholar 

  • Gadermaier G, Gehwolf R, Sebesta W, Pertl H, Hamilton N, Hoidn C, Ferreira F, Obermeyer G (2003) In-planta production of pollen allergens. Expression of Art v 1 in virus- and Agrobacterium-transformed tobacco plants. Allergy Clin Immunol Int 1(Suppl):63–66

    Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    PubMed  CAS  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, Van de Weg WE, Van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    PubMed  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C, Van Eldik GJ, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants co-infected with non-competiting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    PubMed  CAS  Google Scholar 

  • Glatter O (1977) A new method for the evaluation of small angle scattering data. J Appl Cryst 10:415–421

    Google Scholar 

  • Gleba Y, Marillonet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the “full virus” and the “ deconstructed virus” strategies. Curr Opin Plant Biol 7:182–188

    PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    PubMed  CAS  Google Scholar 

  • Goetz H, Kuschel M, Wulff T, Sauber C, Miller C, Fisher S, Woodward C (2004) Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. J Biochem Biophys Methods 60:281–293

    PubMed  CAS  Google Scholar 

  • Hadlington JL, Denecke J (2001) Transient expression, a tool to address questions in plant cell biology. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology. Oxford University Press, Oxford, pp 107–125

    Google Scholar 

  • Hanton SL, Brandizzi F (2006) Fluorescent proteins as markers in the plant secretory pathway. Microsc Res Tech 69:152–159

    PubMed  CAS  Google Scholar 

  • Hanton SL, Matheson LA, Brandizzi F (2006) Seeking the way out: export of proteins from the plant endoplasmic reticulum. Trends Plant Sci 11:335–343

    PubMed  CAS  Google Scholar 

  • Hellens RP, Mullineaux PM, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    PubMed  CAS  Google Scholar 

  • Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    PubMed  CAS  Google Scholar 

  • Himly M, Jahn-Schmid B, Dedic A, Kelemen P, Wopfner N, Altmann F, van Ree R, Briza P, Richter K, Ebner C, Ferreira F (2003) Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensin-like and a hydroxyproline-rich domain. FASEB J 17:106–108

    PubMed  CAS  Google Scholar 

  • Hiroi T, Takaiwa F (2006) Peptide immunotherapy for allergic diseases using a rice-based edible vaccine. Curr Opin Allergy Clin Immunol 6:455–460

    Article  PubMed  CAS  Google Scholar 

  • Holt PG, Macaubas C, Stumbles PA, Sly PD (1999) The role of allergy in the development of asthma. Nature 402:B12–B17

    PubMed  CAS  Google Scholar 

  • Horvarth H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Plant Biol 97:1914–1919

    Google Scholar 

  • Hsu CH, Lin SS, Liu FL, Su WC, Yeh SD (2004) Oral administration of a mite allergen expressed by zucchini yellow mosaic virus in cucurbit species downregulates allergen-induced airway inflammation and IgE synthesis. J Allergy Clin Immunol 113:1079–1085

    PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    PubMed  CAS  Google Scholar 

  • Kato T, Goto Y, Ono K, Hayashi M, Murooka Y (2005) Expression of a major house dust mite allergen from D f in Lotus japonicus acession Miyakojima MG-20. J Biosci Bioeng 99:165–168

    PubMed  CAS  Google Scholar 

  • Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Moriyama T, Ito H, Ozasa S, Adachi A, Yasuda J, Ookura T, Inakuma T, Kasumi T, Ishiguro Y, Ito Y (2006) Reduction of allergenic proteins by the effect of the ripening inhibitor (rin) mutant gene in an F1 hybrid of the rin mutant tomato. Biosci Biotechnol Biochem 70:1227–1233

    PubMed  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stöger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    PubMed  CAS  Google Scholar 

  • Koprowski H, Yusibov V (2001) The green revolution: plants as heterologous expression vectors. Vaccine 19:2735–2741

    PubMed  CAS  Google Scholar 

  • Krebitz M, Wiedermann U, Essl D, Steinkellner H, Wagner B, Turpen TH, Ebner C, Scheiner O, Breiteneder H (2000) Rapid production of the major birch pollen allergen Bet v 1 in Nicotiana benthamiana plants and its immunological in vitro and in vivo characterization. FASEB J 14:1279–1288

    PubMed  CAS  Google Scholar 

  • Krebitz M, Wagner B, Ferreira F, Peterbauer C, Campillo N, Witty M, Kolarich D, Steinkellner H, Scheiner O, Breiteneder H (2003) Plant-based heterologous expression of Mal d 2, a thaumatin-like protein and allergen of apple (Malus domestica), and its characterization as an antifungal protein. J Mol Biol 329:721–730

    PubMed  CAS  Google Scholar 

  • Kurup VP, Shen HD, Vijay H (2002) Immunobiology of fungal allergens. Int Arch Allergy Immunol 129:181–188

    PubMed  CAS  Google Scholar 

  • Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U (2006a) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242

    PubMed  CAS  Google Scholar 

  • Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U (2006b) Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol 118:1176–1183

    PubMed  CAS  Google Scholar 

  • Leonard R, Petersen BO, Himly M, Kaar W, Wopfner N, Kolarich D, van Ree R, Ebner C, Duus JO, Ferreira F, Altmann F (2005) Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding. J Biol Chem 280:7932–7940

    PubMed  CAS  Google Scholar 

  • Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105

    PubMed  CAS  Google Scholar 

  • Lienard D, Dinh OT, van Oort E, van Overtvelt L, Bonneau C, Wambre E, Bardor M, Cosette P, Didier-Laurent A, Dorlhac de Borne F, Delon R, Van Ree R, Moingeon P, Faye L, Gomord V (2007) Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Biotechnol J 5:93–108

    PubMed  CAS  Google Scholar 

  • Lill J (2003) Proteomic tools for quantitation by mass spectrometry. Mass Spectrom Rev 22:182–194

    PubMed  CAS  Google Scholar 

  • Lorenz AR, Scheurer S, Haustein D, Vieths S (2001) Recombinant food allergens. J Chromatogr B Biomed Sci Appl 756:255–279

    PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens - mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    PubMed  CAS  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    PubMed  CAS  Google Scholar 

  • Muller UR (2002) Recombinant Hymenoptera venom allergens. Allergy 57:570–576

    PubMed  CAS  Google Scholar 

  • Newell CA (2000) Plant transformation technology. Developments and applications. Mol Biotechnol 16:53–65

    PubMed  CAS  Google Scholar 

  • Obermeyer G, Gehwolf R, Sebesta W, Hamilton N, Gadermaier G, Ferreira F, Commandeur U, Fischer R, Bentrup FW (2004) Over-expression of plant allergens by molecular farming strategies. Methods 32:235–240

    PubMed  CAS  Google Scholar 

  • Okada A, Okada T, Ide T, Itoh M, Tanaka K, Takaiwa F, Toriyama K (2003) Acculmulation of Japanese cedar pollen allergen, Cry j 1, in the protein body I of transgenic rice seeds using the promoter and signal sequence of glutelin GluB-1 gene. Mol Breed 12:61–70

    CAS  Google Scholar 

  • Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter-terminator of Chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012

    PubMed  CAS  Google Scholar 

  • Parronchi P, Maggi E, Romagnani S (1999) Redirecting Th2 responses in allergy. Curr Top Microbiol Immunol 238:27–56

    PubMed  CAS  Google Scholar 

  • Pauli G (2000) Evolution in the understanding of cross-reactivities of respiratory allergens: the role of recombinant allergens. Int Arch Allergy Immunol 123:183–195

    PubMed  CAS  Google Scholar 

  • Pena L (ed) (2005) Transgenic plants. Methods and protocols. Humana Press, Totowa

    Google Scholar 

  • Pilz I, Glatter O, Kratky O (1979) Small-angle X-ray scattering. Methods Enzymol 61:148–249

    PubMed  CAS  Google Scholar 

  • Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4:3686–3703

    PubMed  CAS  Google Scholar 

  • Shaheen SO, Aaby P, Hall AJ, Barker DJ, Heyes CB, Shiell AW, Goudiaby A (1996) Measles and atopy in Guinea-Bissau. Lancet 347:1792–1796

    PubMed  CAS  Google Scholar 

  • Singh MB, Bhalla PL (2006) Recombinant expression systems for allergen vaccines. Inflamm Allergy Drug Targets 5:53–59

    PubMed  CAS  Google Scholar 

  • Skerra A, Schmidt TGM (2000) Use of the Strep-Tag and Streptavidin for the detection and purification of recombinant proteins. Methods Enzymol 326A: 271–304

    Google Scholar 

  • Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157

    PubMed  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    PubMed  CAS  Google Scholar 

  • Sussman GL, Beezhold DH, Kurup VP (2002) Allergens and natural rubber proteins. J Allergy Clin Immunol 110:S33–S39

    PubMed  CAS  Google Scholar 

  • Svergun DI, Koch MH (2002) Advances in structure analysis using small-angle scattering in solution. Curr Opin Struct Biol 12:654–660

    PubMed  CAS  Google Scholar 

  • Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T, Matsuda T (1996) Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 391:341–345

    PubMed  CAS  Google Scholar 

  • Takagi H, Hiroi T, Yang L, Tada Y, Takamura K, Ishimitsu R, Kawauchi H, HKiyono H, Takaiwa F (2005a) A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA 102:17525–17530

    PubMed  CAS  Google Scholar 

  • Takagi H, Saito S, Yang L, Nagasaka S, Nishizawa N, Takaiwa F (2005b) Oral immunotherapy against pollen allergy using a seed-based peptide vaccine. Plant Biotechnol J 3:521–533

    PubMed  CAS  Google Scholar 

  • Takagi H, Hirose S, Yasuda H, Takaiwa F (2006) Biochemical safety evaluation of transgenic rice seeds expressing T cell epitopes of Japanese cedar pollen allergens. J Agric Food Chem 54:9901–9905

    PubMed  CAS  Google Scholar 

  • Thomas WR, Smith WA, Hales BJ, Mills KL, O’Brien RM (2002) Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol 129:1–18

    PubMed  CAS  Google Scholar 

  • Tyler MI (2000) Amino acid analysis. An overview. Methods Mol Biol 159:1–7

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    PubMed  CAS  Google Scholar 

  • Valenta R, Niederberger V (2007) Recombinant allergens for immunotherapy. J Allergy Clin Immunol 119:826–830

    PubMed  CAS  Google Scholar 

  • Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H (1999) The recombinant allergen-based concept of component-resolved diagnostic and immunotherapy (CRD and CRIT). Clin Exp Allergy 29:896–904

    PubMed  CAS  Google Scholar 

  • van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekma WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    PubMed  Google Scholar 

  • van Ree R (2003) The CREATE project: a new beginning of allergen standardization based on mass units of major allergens. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M 70–73; discussion 74–75

  • van Ree R (2004) The CREATE project: EU support for the improvement of allergen standardization in Europe. Allergy 59:571–574

    PubMed  Google Scholar 

  • Verdino P, Keller W (2004) Circular dichroism analysis of allergens. Methods 32:241–248

    PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    PubMed  CAS  Google Scholar 

  • Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, Breiteneder H (2004) Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods 32:227–234

    PubMed  CAS  Google Scholar 

  • Wallner M, Gruber P, Radauer C, Maderegger B, Susani M, Hoffmann-Sommergruber K, Ferreira F (2004) Lab scale and medium scale production of recombinant allergens in E. coli. Methods 32:219–226

    PubMed  CAS  Google Scholar 

  • Wallner M, Briza P, Thalhamer J, Ferreira F (2007) Specific immunotherapy in pollen allergy. Curr Opin Mol Ther 9:160–167

    PubMed  CAS  Google Scholar 

  • Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 14:145–150

    PubMed  CAS  Google Scholar 

  • Witte C-P, Noel LD, Gielbert J, Parker JE, Romeis T (2004) Rapid one-step protein purification from plant material using eight-amino acid StrepII epitope. Plant Mol Biol 55:135–147

    PubMed  CAS  Google Scholar 

  • Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, Ferreira F (2005) The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol 138:337–346

    PubMed  CAS  Google Scholar 

  • Yang L, Susuki K, Hirose S., Wakasa Y, Takaiwa F (2007) Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. Plant Biotechnol J 5:815–826

    PubMed  CAS  Google Scholar 

  • Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737–3746

    PubMed  CAS  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

GO thank the FWF (S8804, L189-B03) and the University of Salzburg (Priority Program “Bioscience and Health”). The work of FF was supported by grants from the Austrian Science Fund (FWF S8802) and from the Christian-Doppler Research Association. AR acknowledges the financial support of VTT Technical Research Centre of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, G., Gadermaier, G., Pertl, H. et al. Production of recombinant allergens in plants. Phytochem Rev 7, 539–552 (2008). https://doi.org/10.1007/s11101-008-9099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-008-9099-z

Keywords

Navigation