Skip to main content
Log in

Physiological responses of a green algae (Ulva prolifera) exposed to simulated acid rain and decreased salinity

  • Original papers
  • Published:
Photosynthetica

Abstract

In order to evaluate the combined effects of simulated acid rain (SAR) and salinity on the physiological responses of macroalgae, Ulva prolifera was cultured under three salinity treatments (5, 10, 25 ‰) and at different pH, i.e., at pH 4.4 (C), pH 4.4(F), where the pH of the culture increased from 4.4 to approximately 7.8 during the cultivation period, or in absence of SAR at pH 8.2(C), at 100 μmol(photon) m–2 s–1 and 20°C. Compared to 25‰ salinity, Relative growth rate (RGR) of U. prolifera was enhanced by 10‰ salinity, but decreased by 5‰ salinity. No significant differences in RGR were observed between the pH 8.2(C) and pH 4.4(F) treatments, but the chlorophyll a content was reduced by SAR. Negative effects of SAR on the photosynthesis were observed, especially under low salinity treatments. Based on the results, we suggested that the U. prolifera showed a tolerance to a wide range of salinity in contrast to the low pH induced by acid rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

EPB:

epibrassinolide

Fv′/Fm′:

effective quantum yield of PSII photochemical efficiency

Fv/Fm :

maximal quantum yield of PSII photochemical efficiency

FM:

fresh mass

pH 8.2(C):

the treatment without simulated acid rain, the pH was kept at about 8.2

pH 4.4(C):

in the presence of simulated acid rain, the pH of the culture was kept at about 4.4

pH 4.4(F):

in the presence of simulated acid rain, the pH of the culture increased from 4.4 to approximately 7.8 during the cultivation period

P G :

gross photosynthetic rate

P N :

net photosynthetic rate

R D :

dark respiration rate

RGR:

relative growth rate

SAR:

simulated acid rain

S5:

the treatment with salinity of 5‰

S10:

the treatment with salinity of 10‰

S25:

the treatment with salinity of 25‰

References

  • Bisson M.A., Kirst G.O.: Osmotic adaption in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organic compounds. — Aust. J. Plant Physiol. 6: 523–538, 1979.

    CAS  Google Scholar 

  • Bohnert H.J., Nelson D.E., Jensen R.G.: Adaptations to environmental stresses. — Plant Cell 7: 1099–1111, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton J.J., Robertson-Andersson D.V., Shuuluka D. et al.: Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. — J. Appl. Phycol. 21: 575–583, 2009.

    Article  Google Scholar 

  • Chang W.C., Chen M.H., Lee T.M.: 2,3,5-triphenyltetrazolium chloride reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress.–Bot. Bull. Acad. Sinica 40: 207–212, 1999.

    CAS  Google Scholar 

  • Charlson R.J., Rodhe H.: Factors controlling the acidity of natural rainwater. — Nature 295: 683–695, 1982.

    Article  CAS  Google Scholar 

  • Chen B.B., Zou D.H.: Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings. — Acta Oceanol. Sin. 34: 108–113, 2015.

    Article  Google Scholar 

  • Chen S.T., Shen X.S., Hu Z.H. et al.: Effects of simulated acid rain on soil CO2 emission in a seconday forest in subtropical China. — Geoderma 189–190: 65–71, 2012.

    Article  Google Scholar 

  • Davison I.R., Pearson G.A.: Stress tolerance in intertidal seaweeds. — J. Phycol. 32: 197–211, 1996.

    Article  Google Scholar 

  • Ding H.M., Yao F.F, Chen J.J. et al.: [Chemical characteristics of acidic precipitation in Tiantong, Zhejiang Province.]. — Acta Sci. Circumstantiae 32: 2245–2252, 2012. [In Chinese]

    CAS  Google Scholar 

  • Durack P.J., Wijffels S.E., Matear R.J.: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. — Science 336: 455–458, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn N.J.: A modified anthrone reagent. — Chem. Ind. 4: 86, 1953.

    Google Scholar 

  • Felten V., Tixier G., Guérold F.: Acid rain ecotoxicity.–In: Férard J.F., Blaise C. (ed.): Encyclopedia of Aquatic Ecotoxicology. Pp.1–14. Springer, Dordrecht 2013.

    Google Scholar 

  • Gao S., Chen X., Yi Q. et al.: A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. — PLoS ONE 5: e8571, 2010.

    Article  Google Scholar 

  • Gao S., Zheng Z., Gu W. et al.: Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta). — Physiol. Plantarum 152: 380–388, 2014.

    Article  CAS  Google Scholar 

  • Gao S., Shen S., Wang G. et al.: PSI-driven cyclic electron flow allows intertidal macroalgae Ulva sp. (Chlorophyta) to survive in desiccated conditions. — Plant Cell Physiol. 52: 885–893, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Gao S., Sun Q.H., Tao Y. L. et al.: A decline in macroalgae species resulting in the overwhelming prevalence of Corallina species is caused by low-pH seawater induced by short-term acid rain. — J. Exp. Mar. Biol. Ecol. 475: 144–153, 2016.

    Article  CAS  Google Scholar 

  • Gensemer R.W., Playe R.C.: The bioavailability and toxicity of aluminum in aquatic environments. — Crit. Rev. Env. Sci. Tec. 29: 315–450, 1999.

    Article  CAS  Google Scholar 

  • Karsten U.: Research note: salinity tolerance of Arctic kelps from Spitsbergen. — Phycol. Res. 55: 257–262, 2007.

    Article  Google Scholar 

  • Lartigue J., Neill A., Hayden B. L. et al.: The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). — Aquat. Bot. 75: 339–350, 2003.

    Article  CAS  Google Scholar 

  • Lawton R.J., de Nys R., Magnusson M.E., Paul N.A.: The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater macroalga. — Algal Res. 12: 213–220, 2015.

    Article  Google Scholar 

  • Lee Y.H., Kim D.J., Kim H.K.: Characteristics of the seawater quality variation on the south coastal area of Korea. — KSCE J. Civ. Eng. 7: 123–130, 2003.

    Article  Google Scholar 

  • Li H.S.: [Principle and Technology of Plant Physiological and Biochemical Experiments.] Pp. 267–268. Higher Education Press, Beijing 2000. [In Chinese]

    Google Scholar 

  • Liu T., Chen J. A., Wang W. et al.: A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain. — PLoS ONE 9: e90120, 2014.

    Article  Google Scholar 

  • Luo Y., Li Z.: Trend analysis of acid rain pollution for ten years in urban of Ningbo. — Environ. Sci. Technol. 34: 252–253, 2011.

    Google Scholar 

  • Manny B.A., Fahnenstiel G.L., Gardner W.S.: Acid rain stimulation of Lake Michigan phytoplankton growth. — J. Great Lakes Res. 13: 218–223, 1987.

    Article  CAS  Google Scholar 

  • Mantri V.A., Singh R.P., Bijo A. J. et al.: Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). — J. Appl. Phycol. 23: 243–250, 2011.

    Article  Google Scholar 

  • Milligan A.J., Mioni C.E., Morel F.M.M.: Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogii. — Mar. Chem. 114: 31–36, 2009.

    Article  CAS  Google Scholar 

  • Provasoli, L.: Media and prospects for the cultivation of marine algae.–In: Watanabe A., Hattori A. (ed.): Cultures and Collections of Algae. Pp. 63–75. Jpn. Soc. Plant Physiol., Tokyo 1968.

    Google Scholar 

  • Ramlall C., Varghese B., Ramdhani S. et al.: Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. — Physiol. Plantarum 153: 149–160, 2015.

    Article  CAS  Google Scholar 

  • Raut R., Sharma S., Bajracharya R.M.: Biotic response to acidification of lakes–a review.–Kathman. Univ. J. Sci. Eng. Technol. 8: 1171–1184., 2012.

    Google Scholar 

  • Rautenberger R., Fernández P. A., Strittmatter M. et al.: Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). — Ecol. Evol. 5: 874–888, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt É.C., de L. Felix M. R., Polo L.K. et al.: Influence of cadmium and salinity in the red alga Pterocladiella capillacea: cell morphology, photosynthetic performance and antioxidant systems. — Braz. J. Bot. 38: 737–749, 2015.

    Article  Google Scholar 

  • Simon C., ArGall E., Levavasseur G. et al.: Effects of short-term variations of salinity and temperature on photosynthetic response of the red alga Grateloupia doryphora from Brittany (France). — Bot. Mar. 42: 437–440, 1999.

    Article  CAS  Google Scholar 

  • Steen H.: Effects of reduced salinity on reproduction and germling development in Sargassum muticum (Phaeophyceae, Fucales). — Eur. J. Phycol. 39: 293–299, 2004.

    Article  CAS  Google Scholar 

  • Touchette B.W.: Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. — J. Exp. Mar. Biol. Ecol. 350: 194–215, 2007.

    Article  Google Scholar 

  • Wang W.X., Xu P.J.: Research progress in precipitation chemistry in China. — Prog. Chem. 21: 266–281, 2009a.

    CAS  Google Scholar 

  • Wang D.Z., Jiang X., Rao W. et al.: Kinetics of soil cadmium desorption under simulated acid rain. — Ecol. Complex. 6: 432–437, 2009b.

    Article  Google Scholar 

  • Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total cartenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Wu H., Gao K.: Ultraviolet radiation stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. — Funct. Plant Biol. 36: 137–143, 2009.

    Article  CAS  Google Scholar 

  • Xia J.R., Li Y.J., Zou D.H.: Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. — Aquat. Bot. 80: 129–137, 2004.

    Article  CAS  Google Scholar 

  • Xie X.J., Wang X.L., Lin L.D. et al.: Effects of hypo- and hypersalinity on photosynthetic performance of Sargassum fusiforme (Fucales, Heterokontophyta). — Photosynthetica 54: 210–218, 2016.

    Article  CAS  Google Scholar 

  • Xu J., Gao K.: Future CO2-induced ocean acidification mediates the physiological performance of green tide alga. — Plant Physiol. 160: 1726–1769, 2012.

    Article  Google Scholar 

  • Yamochi S.: Effects of desiccation and salinity on the outbreak of a green tide of Ulva pertusa in a created salt marsh along the coast of Osaka Bay, Japan. — Estuar. Coast. Shelf S. 116: 21–28, 2013.

    Article  CAS  Google Scholar 

  • Zhang M.Y., Wang S.J., Wu F.C. et al.: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. — Atmos. Res. 84: 311–322, 2007.

    Article  CAS  Google Scholar 

  • Zou D.H., Gao K.S.: The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobate (Chlorophyta). — Phycologia 53: 86–94, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Xu.

Additional information

Acknowledgments: This study was supported by the Natural Science Foundation of Zhejiang Province (LQ15D060002), the National Natural Science Foundation (41606129), the Natural Science Foundation of Anhui Province (1508085QC67), PhD research startup foundation of Ningbo Univ. (F01259144702), Ningbo University “Fisheries” Priority Subject Open Fund of Zhejiang Province (xkzsc1516) and was also sponsored by K.C.Wong Magna Fund in Ningbo University.

Author contributions: On the basis of an original idea from Y.H. Li, the concept of this paper was developed in discussion between all authors. Y.H. Li, D. Wang, X.T. Xu, and X.X. Gao performed the experiments. All the authors contributed to data analysis and discussion and the writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.H., Wang, D., Xu, X.T. et al. Physiological responses of a green algae (Ulva prolifera) exposed to simulated acid rain and decreased salinity. Photosynthetica 55, 623–629 (2017). https://doi.org/10.1007/s11099-017-0689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0689-0

Additional key words

Navigation