Skip to main content

Advertisement

Log in

Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment

  • Original Paper
  • Published:
Photosynthetica

Abstract

A field trial was conducted to determine the effect of nitrogen-enriched biochar on soil water content, plant’s photosynthetic parameters, and grain yield of spring wheat at the Dingxi Experimental Station during the 2014 and 2015 cropping seasons. Results showed that biochar applied with nitrogen fertilizer at a rate of 50 kg ha–1 of N (BN50) increased soil water content in the 0–30 cm depth range by approximately 40, 32, and 53% on average at anthesis, milking, and maturity, respectively, compared with zero-amendment (CN0). Stomatal conductance and net photosynthetic rate after the BN50 treatment increased by approximately 40 to 50% compared to CN0. Soil water content and photosynthetic traits also increased in other treatments using straw plus nitrogen fertilizer, but to lesser extent than that of BN50. Grain yields were highest (1905 and 2133 kg ha–1 in 2014 and 2015, respectively) under BN50. From this, biochar appears to have a potential for its use with N-fertilizer as a cost-effective amendment for crop production in semiarid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ca:

ambient CO2 concentration

Ci:

intercellular CO2 concentration

Chl:

chlorophyll

E :

transpiration rate

ET:

total evapotranspiration

g s :

stomatal conductance

LA:

leaf area

LS :

stomatal limitation

P N :

net photosynthetic rate

RH:

relative humidity

SN50 :

nitrogen fertilizer

VPD:

vapour pressure deficit

WUE:

water-use efficiency

WUEg :

grain wateruse efficiency

Ψw :

leaf water potential

References

  • Ali M., Jensen C.R., Mogensen V.O., Bahrun A.: Drought adaptation of field grown wheat in relation to soil physical conditions.–Plant Soil 208: 149–159, 1999.

    Article  CAS  Google Scholar 

  • Baronti S., Vaccari F.P., Miglietta F. et al.: Impact of biochar application on plant water relations in Vitis Vinifera (L.).–Eur. J. Agron. 53: 38–44, 2014.

    Article  CAS  Google Scholar 

  • Basso A.S., Miguez F.E., Laird D.A. et al.: Assessing potential of biochar for increasing water–holding capacity of sandy soils.–GCB Bioenergy 5: 132–143, 2013.

    Article  CAS  Google Scholar 

  • Biswas S., Ali M.N., Goswami R. et al.: Soil health sustainability and organic farming: A review.–J. Food Agric. Environ. 12: 237–243, 2014.

    Google Scholar 

  • Brockhoff S.R., Christians N.E., Killorn R.J. et al.: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar.–Agron. J. 102: 1627–1631, 2010.

    Article  Google Scholar 

  • Case S.D., McNamara N. P., Reay D.S., Whitaker J.: The effect of biochar addition on N2O and CO2 emissions from sandy loam soil. The role of soil aeration.–Soil Biol. Biochem. 51: 125–134, 2012.

    Article  CAS  Google Scholar 

  • Chinese Soil Taxonomy Cooperative Research Group.: [Chinese Soil Taxonomy (Revised Proposal).] Pp. 137–147. Inst. Soil Sci., Chinese Agricult. Sci. Technol.Press, Academic Sinica, Beijing 1995. [In Chinese]

    Google Scholar 

  • Cramer M. D., Hoffmann V., Verboom G.A.: Nutrient availability moderates transpiration in Ehrharta calycina.–New Phytol. 179: 1048–1057, 2008.

    Article  CAS  PubMed  Google Scholar 

  • FAO.: Soil Map of the World: Revised Legend. World Soil Resources Report 60. Pp. 7. FAO, Rome 1990.

    Google Scholar 

  • Flexas J., Bota J., Galmés J., et al.: Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress.–Physiol. Plantarum 127: 343–352, 2006.

    Article  CAS  Google Scholar 

  • Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants.–Plant Biol. 6: 269–279, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Glaser B., Lehmann J., Zech W.: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal. A review.–Biol. Fert. Soils 35: 219–230, 2002.

    Article  CAS  Google Scholar 

  • Han G., Zhao Z.: [Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures.]–Acta Ecol. Sin. 30: 4019–4026, 2010.

    CAS  Google Scholar 

  • Huang G.B., Chai Q., Feng F.X., Yu A.Z.: Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid Northwest China.–J. Integr. Agr. 11: 1286–1296, 2012.

    Article  Google Scholar 

  • Huang G.B., Zhang R.Z., Li G.D. et al.: Productivity and sustainability of a spring wheat-field pea rotation in a semiarid environment under conventional and conservation tillage systems.–Field Crop. Res. 107: 43–55, 2008.

    Article  Google Scholar 

  • Jamieson P. D., Ewert F.: The role of roots in controlling soil water extraction during drought: an analysis by simulation.–Field Crop. Res. 60: 267–280, 1999.

    Article  Google Scholar 

  • Jeffery S., Verheijen F.G.A., van der Velde M., Bastos A.C.: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis.–Agr. Ecosyst. Environ. 144: 175–187, 2011.

    Article  Google Scholar 

  • Jia D., Dai X., He M.: Polymerization of glutenin dying grain development and quality expression in winter wheat in response to irrigation levels.–Crop Sci. 52: 1816–1827, 2012.

    Article  CAS  Google Scholar 

  • Kammann C., Linsel S., Gößling J.W. et al.: Influence of biochar on drought tolerance of Chenopodium quinoa Wild and on soil-plant relations.–Plant Soil 345: 195–210, 2011.

    Article  CAS  Google Scholar 

  • Lal R.: Constraints to adopting no–till farming in developing countries.–Soil Till. Res. 94: 1–3, 2007.

    Article  Google Scholar 

  • Lal R.: Soil carbon sequestration to mitigate climate change.–Geoderma 123: 1–22, 2004.

    Article  CAS  Google Scholar 

  • Larcher W.: Physiological Plant Ecology Ecophysiology and Stress: Physiology of Functional Groups (4th ed.). Pp. 514., Springer Verlag, Berlin–Heidelberg 2003.

    Book  Google Scholar 

  • Larneyn F.J., Angers D.A.: The role of organic amendments in soil reclamation: A review.–Can. J. Soil Sci. 92: 19–38, 2012.

    Article  Google Scholar 

  • Major J., Steiner C., Downie A. et al.: Biochar effects on nutrient leaching.–In Lehmann J., Joseph S. (ed.): Biochar for Environmental Management: Science and technology. Pp. 271–288. Earthscan, London 2009.

    Google Scholar 

  • Mengel K., Kirkby E. A.: Principles of Plant Nutrition (4th ed.). Pp. 687. International Potash Institute, Bern 1987.

    Google Scholar 

  • Novak J.M., Busscher W.J., Watts D.W. et al.: Biochars impact on soil-moisture storage in an ultisol and two aridisols.–Soil Sci. 177: 310–320, 2012.

    Article  CAS  Google Scholar 

  • Parry M.A.J., Reynolds M., Salvucci M.E. et al.: Raising yield potential of wheat II. Increasing photosynthetic capacity and efficiency.–J. Exp. Bot. 62: 453–467, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Parry M.A.J., Andralojc P.J., Khan S.L. et al.: Rubisco activity. Effects of drought stress.–Ann. Bot.-London 89: 833–839, 2002.

    Article  CAS  Google Scholar 

  • Polley H.W.: Implications of atmospheric and climatic change for crop yield and WUEg.–Crop Sci. 42: 131–140, 2002.

    Article  PubMed  Google Scholar 

  • Reynolds M.P., van Ginkel M., Ribaut J.M.: Avenues for genetic modification of radiation use efficiency in wheat.–J. Exp. Bot. 51: 459–473, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Rondon M.A., Lehmann J., Ramirez J. et al.: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions.–Biol. Fert. Soils 43: 699–708, 2007.

    Article  Google Scholar 

  • Rosales-Serna R., Kohashi-Shibata J., Acosta-Gallegos J.A. et al.: Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars.–Field Crop. Res. 85: 203–211, 2004.

    Article  Google Scholar 

  • Slavich P.G., Sinclair K., Morris S.G. et al.: Contrasting effects of manure and green waste biochars on the proportions of an acidic ferralsol and productivity of a subtropical pasture.–Plant Soil 366: 1–15, 2012.

    Google Scholar 

  • Solaiman Z.M., Blackwell P., Abbott L.K. et al.: Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat.–Soil Res. 48: 546–554, 2010.

    Article  CAS  Google Scholar 

  • Spokas K.A., Cantrell K.B., Novak J.M. et al.: Biochar: A synthesis of its agronomic impact beyond carbon sequestration.–J. Environ. Qual. 41: 973–989, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sun X., Liu Q., Wang D.J. et al.: [Effect of long-term application of straw on soil fertility.]–Chin. J. Ecolog. Agricult. 16: 587–592, 2008. [In Chinese]

    CAS  Google Scholar 

  • Talgre L., Lauringson E., Roostalu H. et al.: Green manure as a nutrient source for succeeding crops.–Plant Soil Environ. 58: 275–281, 2012.

    Google Scholar 

  • Tezara W., Mitchell V., Driscoll S.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP.–Nature 401: 914–917, 1999.

    Article  CAS  Google Scholar 

  • Verheijen F., Jeffery S., Bastos A.C. et al.: Biochar Application to Soils–A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EUR 24099 EN. Pp. 166. Office for the Official Publications of the European Communities, Luxembourg 2010.

    Google Scholar 

  • Wang D., Yu Z.W., White P. J.: The effect of supplemental irrigation after jointing on leaf senescence and grain–filling in wheat.–Field Crop. Res. 151: 35–44, 2013.

    Article  Google Scholar 

  • Wang M., Shi S., Lin F. et al.: Effects of soil water and nitrogen on growth and photosynthetic response of manchurian ash (Fraxinus mandshurica) seedlings in northeastern China.–PLoS ONE 7: e30754, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson C.A., Atkinson D., Gosling P. et al.: Managing soil fertility in organic farming systems.–Soil Use Manage. 18: 239–247, 2002.

    Article  Google Scholar 

  • Yamato M., Okimori Y., Wibowo I.F. et al.: Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia.–Soil Sci. Plant Nutr. 52: 489–495, 2006.

    Article  CAS  Google Scholar 

  • Yeboah S., Zhang R., Cai L. et al.: Tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat–field pea rotation.–Plant Soil Environ. 62: 279–285, 2016.

    Article  Google Scholar 

  • Yin C.Y., Berninger F., Li C.Y.: Photosynthetic responses of Populus przewalski subjected to drought stress.–Photosynthetica 44: 62–68, 2006.

    Article  Google Scholar 

  • Yin R., Yin G.: China’s primary programs of terrestrial ecosystem restoration: Initiation, implementation, and challenges.–Environ. Manage. 45: 429–441, 2010.

    Article  PubMed  Google Scholar 

  • Zadoks J.C., Chang T.T., Konzak C.F.: A decimal code for the growth stages of cereals.–Weed Res. 14: 415–421, 1974.

    Article  Google Scholar 

  • Zhao F., Yang, X.Y., Strahler, A. H. et al.: A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system.–Remote Sens. Environ. 136: 330–341, 2013.

    Article  Google Scholar 

  • Zhao X.Z., Li F.M., Mo F. et al.: Integrated conservation solutions for the endangered Loess Plateau of Northwest China Special Issue.–Pak. J. Bot. 44: 77–83, 2012.

    Google Scholar 

  • Zhu X., Li Y., Peng X. et al.: Soils of the loess region in China.–Geoderma 29: 237–255, 1983.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (31160269 and 315159), The "National Twelfth Five–Year Plan" Circular Agricultural Science and Technology Project (2012 BAD14B03) and Gansu Provincial Key Laboratory of Aridland Crop Science open fund project (GSCS–2013–13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeboah, S., Zhang, R., Cai, L. et al. Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica 55, 532–542 (2017). https://doi.org/10.1007/s11099-016-0672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0672-1

Additional key words

Navigation