Skip to main content

Advertisement

Log in

Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly

  • Published:
Photosynthetica

Abstract

Light-emitting diodes (LEDs) are a promising technology with a potential to improve the irradiance efficiency, light quality, and the light spectrum for increasing plant yield and quality. In this experiment, we investigated the impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white, on the growth and photosynthesis, phytochemical contents, and mineral element concentrations in lettuce (Lactuca sativa L. cv. ‘Grizzly’) in comparison to normal greenhouse conditions. Photon flux of 300 µmol m−2 s−1 was provided for 14 h by 120 LEDs set on a 60 cm × 60 cm sheet of aluminum platform in the growth chambers, where plants were grown for 60 d. Fresh mass per plant was significantly higher when grown under 100% blue and 70% red + 30% blue LEDs compared to the other environments including greenhouse conditions. Phytochemical concentrations and a nutritive value of lettuce were also significantly affected by the light treatments. Chlorophyll and carotenoid concentrations increased in the plants grown under 70% red + 30% blue LEDs compared to those grown in the greenhouse. Vitamin C content was 2.25-fold higher in the plants grown under 100% blue LEDs compared to those grown in the greenhouse. Higher photosynthesis and maximal quantum yield of PSII photochemistry were also observed in the plants treated with LED lights. The application of LED light led to the elevated concentrations of macro-and micronutrients in lettuce possibly because of the direct effect of LED light and lower stress conditions in the growth chambers compared to the greenhouse. Although the mechanism of the changes in lettuce grown under LED is not well understood, the results of this study demonstrated that LED light could be used to enhance the growth and nutritional value of lettuce in indoor plant production facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll

DM:

dry mass

FM:

fresh mass

Fv/Fm :

maximal quantum yield of PSII photochemistry

LED:

light emitting diode

MDS:

multidimensional scaling

TCA:

trichloroacetic acid

References

  • Bremner J.M., Mulvaney C.S.: Nitrogen-total. - In: Page A.L., Miller R.H., Keeney D.R. (ed.): Methods of Soil Analysis, Part 2–Chemical and Microbiological Properties. 2nd ed. Pp. 595–622. Am. Soc. Agron., Madison 1982.

    Google Scholar 

  • Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting.–J. Am. Soc. Hortic. Sci. 120: 808–813, 1995.

    CAS  PubMed  Google Scholar 

  • Chen X.-L., Guo W.-Z., Xue X.-Z. et al.: Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). - Sci. Hortic.- Amsterdam 172: 168–175, 2014.

    Article  Google Scholar 

  • Chin L.Y., Chong K.K.: Study of high power light emitting diode (LED) lighting system in accelerating the growth rate of Lactuca sativa for indoor cultivation. - Int. J. Phys. Sci. 7: 1173–1781, 2012.

    Google Scholar 

  • Colquhoun T.A., Schwieterman M.L., Gilbert J.L. et al.: Light modulation of volatile organic compounds from petunia flowers and select fruits. - Postharvest Biol. Tec. 86: 37–44. 2013.

    Article  CAS  Google Scholar 

  • Costa Galvão V., Fankhauser C.: Sensing the light environment in plants: photoreceptors and early signalling steps.–Curr. Opin. Neurobiol. 34: 46–53, 2015.

    Article  Google Scholar 

  • Darko E., Heydarizadeh P., Schoefs B., Sabzalian M.R.: Photosynthesis under artificial light: the shift in primary and secondary metabolites. - Philos. T. Roy. Soc. B 369: 20130243, 2014.

    Article  Google Scholar 

  • Goins G.D., Yorio N.C., Sanwo M.M., Brown C.S.: Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting.–J. Exp. Bot. 48: 1407–1413, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Goto E.: Plant production in a closed plant factory with artificial lighting. - Acta Hortic. 956: 37–49, 2012.

    Article  Google Scholar 

  • Helrich K. (ed.): Official Method of Analysis, 15th ed. Pp. 1298. Assoc. Official Anal. Chem., Washington 1990.

  • Imaizumi T., Kanegae T., Wada M.: Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillusveneris. - Plant Cell 12: 81–96, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins G.I.: UV-A and blue light signal transduction in Arabidopsis. - Plant Cell Environ. 20: 773–778, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Jing Y.: Cryptochrome effect on mineral element absorption. - MSc Thesis, Hunan University. Hunan 2009.

    Google Scholar 

  • Johkan M., Shoji K., Goto F. et al.: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce.–HortSci. 45: 1809–1814, 2010.

    Google Scholar 

  • Johkan M., Shoji K., Goto F. et al.: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. - Environ. Exp. Bot. 75: 128–133, 2012.

    Article  CAS  Google Scholar 

  • Kasuga M., Liu Q., Miura S. et al.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stressinducible transcription factor. - Nat. Biotechnol. 17: 287–291, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Kim B.S., Lee H.O., Kim J.Y. et al.: An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. - Hortic. Environ. Biote. 52: 35–39, 2011.

    Article  CAS  Google Scholar 

  • Kopsell D.A., Sams C.E.: Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. - J. Am. Soc. Hortic. Sci. 138: 31–37, 2013.

    Google Scholar 

  • Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. - Environ. Exp. Bot. 67: 59–64, 2009.

    Article  CAS  Google Scholar 

  • Lin C.: Blue light receptors and signal transduction. - Plant Cell 14: S207–S225, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K.H., Huang M.Y., Huang W.D. et al.: The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata).–Sci. Hortic.- Amsterdam 150: 86–91. 2013.

    Article  Google Scholar 

  • Lichtenthaler K., Buschmann C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy.–In: Wrolstad R.E. et al. (ed.): Current Protocols in Food Analytical Chemistry. Pp. 821–828. John Wiley & Sons, Inc., New Jersey 2001.

    Google Scholar 

  • Liu Y., Roof S., Ye Z. et al.: Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato.–P. Natl. Acad. Sci. USA 101: 9897–9902, 2004.

    Article  CAS  Google Scholar 

  • Markou G.: Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. - Appl. Biochem. Biotechnol. 172: 2758–68, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Martineau V., Lefsrud M., Tahera Naznin M., Kopsell D.A.: Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston lettuce. - HortSci. 47: 477–482, 2012.

    CAS  Google Scholar 

  • Moran J.F., Becana M., Iturbe-Ormaetxe I. et al.: Drought induces oxidative stress in pea plants. - Planta 194: 346–352, 1994.

    Article  CAS  Google Scholar 

  • Nhut D.T., Hong L.T.A., Watanabe H. et al.: Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. - Acta Hortic. 575: 117–124, 2002.

    Article  Google Scholar 

  • Nielsen SS.: Vitamin C determination by indophenol method. - In: Nielsen S.S. (ed.): Food Analysis Laboratory Manual. Pp 55–60. Springer, New York 2009.

    Google Scholar 

  • Okamoto K., Yanagi T., Kondo S.: Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light.–Acta Hortic. 435: 149–57, 1997.

    Article  Google Scholar 

  • Olsen S.R., Sommers L.E.: Phosphorus. - In: Page A.L. (ed.): Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. Pp. 403–430. Am. Soc. Agron., Madison 1982.

    Google Scholar 

  • Pinho P., Jokinen K., Halonen L.: Horticultural lighting-present and future challenges.–Lighting Res. Technol. 44: 427–437, 2012.

    Article  Google Scholar 

  • Ragaee S., Abdel–Aal E.M., Noaman M.: Antioxidant activity and nutrient composition of selected cereals for food use. - Food Chem. 98: 32–38, 2006.

    Article  CAS  Google Scholar 

  • Roxas V.P., Lodhi S.A., Garrett D.K. et al.: Stress tolerance in transgenic tobacco seedlings that overexpress glutathione Stransferase/ glutathione peroxidase. - Plant Cell Physiol. 41: 1229–1234, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sabzalian M.R., Heydarizadeh P., Boroomand A. et al.: High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. - Agron. Sustain. Dev. 34: 879–886, 2014.

    Article  Google Scholar 

  • Samuoliene G., Urbonavičiūtė A., Duchovskis P. et al.: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. - HortSci. 44: 1857–1860, 2009.

    Google Scholar 

  • Samuolienė G., Brazaitytė A., Sirtautas R. et al.: The effect of supplementary led lighting on the antioxidant and nutritional properties of lettuce. - Acta Hortic. 952: 835–841, 2012.

    Article  Google Scholar 

  • SAS Institute, Inc.: SAS/STAT 9.1 User’s Guide. Pp. 421–480. SAS Institute Inc., Cary 2004.

    Google Scholar 

  • Schoefs B.: Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. - Trends Food Sci. Tech. 13: 361–371, 2002.

    Article  CAS  Google Scholar 

  • Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. - Ann. Bot.-London 79: 273–282, 1997.

    Article  CAS  Google Scholar 

  • Shin Y-S., Lee M-J., Lee E-S. et al.: Effect of light emitting diodes treatment on growth and mineral contents of lettuce (Lactuca sativa L. ‘Chung Chi Ma’). - Korean J. Organic Agr. 21: 659–668, 2013.

    Article  Google Scholar 

  • Son K-H., Oh M-M.: Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. - HortSci. 48: 988–995, 2013.

    Google Scholar 

  • Son K-H., Oh M-M.: Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. - Hortic. Environ. Biote. 56: 639–653, 2015.

    Article  CAS  Google Scholar 

  • Son K.-H., Park J.-H., Kim D., Oh M.-M.: Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes.–Kor. J.Hort. Sci. Technol. 30: 664–672, 2012. [In Korean]

    CAS  Google Scholar 

  • Tamulaitis G., Duchovskis P., Bliznikas Z. et al.: High-power light-emitting diode based facility for plant cultivation. - J. Phys. D Appl. Phys. 38: 3182–3187, 2005.

    Article  CAS  Google Scholar 

  • Tanaka M., Takamura T., Watanabe H. et al.: In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emit- ting diodes (LEDs).–J. Hortic. Sci. Biotech. 73: 39–44, 1998.

    Article  Google Scholar 

  • Taulavuori K., Hyöky V., Oksanen J. et al.: Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. - Environ. Exp. Bot. 121: 145–150, 2016.

    Article  CAS  Google Scholar 

  • Wang C-Y., Fu C-C., Liu Y-C.: Effects of using light-emitting diodes on the cultivation of Spirulina platensis. - Biochem. Eng. J. 37: 21–25, 2007.

    Article  Google Scholar 

  • Watanabe H.: Light-controlled plant cultivation system in Japan–development of a vegetable factory using LEDs as a light source for plants. - Acta Hortic. 907: 37–44, 2009.

    Google Scholar 

  • Wojciechowska R., Długosz-Grochowska O., Kołton A., Żupnik M.: Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles. - Sci. Hortic.-Amsterdam 187: 80–86, 2015.

    Article  Google Scholar 

  • Wu H-C., Lin C-C.: Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. - HortSci. 47: 1490–1494, 2012.

    CAS  Google Scholar 

  • Yanagi T., Okamoto K.: Utilization of super-bright light emitting diodes as an artificial light source for plant growth. - Acta Hortic. 418: 223–228, 1997.

    Article  Google Scholar 

  • Yanagi T., Okamoto K., Takita S.: Effects of blue, red and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. - Acta Hortic. 440: 117–122, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Yeh N., Chung J-P.: High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation. - Renew. Sustain. Energy Rev. 13: 2175–2180, 2009.

    Article  CAS  Google Scholar 

  • Yorio N.C., Goins G.D., Kagie H.R. et al.: Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. - HortSci. 36: 380–383, 2001.

    CAS  Google Scholar 

  • Zukauskas A., Bliznikas Z., Breviė K. et al.: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars.–Acta Hortic. 907: 87–90, 2011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sabzalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoozgar, A., Mohammadi, A. & Sabzalian, M.R. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55, 85–95 (2017). https://doi.org/10.1007/s11099-016-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0216-8

Additional key words

Navigation