Skip to main content
Log in

Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment

  • Original Papers
  • Published:
Photosynthetica

Abstract

In juvenile trees growing at the rainforest understory, light is the most limiting factor for growth. It has been assumed that stomata quickly respond to light irrespective of the physical conditions prevailing before leaf illumination. Nevertheless, so far this issue has not been addressed for saplings of Amazonian tree species. The aim of this study was to determine how stomatal conductance (g s) and photosynthetic parameters of Amazonian saplings respond to diurnal variation in the physical environment and to rainfall seasonality. Light-saturated net photosynthetic rate (P Nmax) and g s at light saturation (g smax) were measured in the dry (August) and rainy (January) season of 2008 in saplings of 10 Amazonian tree species (Minquartia guianensis, Myrcia paivae, Protium apiculatum, Guatteria olivacea, Unonopsis duckei, Rinorea guianensis, Dicypellium manausense, Eschweilera bracteosa, Gustavia elliptica, and Tapura amazonica). At the forest understory, variables of the physical environment were measured. Rainfall seasonality did not affect P Nmax and g smax, nor was the effect of species on P Nmax and g smax significant (p>0.05). The g s and P Nmax increased as the forest understory became brighter and warmer; as a result, P Nmax and g smax were higher at midday than early in the morning or in the afternoon. However, contrary to expectations, neither changes in air vapor pressure deficit nor air CO2 concentration at the forest understory affected stomatal opening. More investigation is needed to elucidate the role of environmental factors in modulating stomatal movements in juvenile trees growing beneath the dense canopy of tropical rainforests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

[CO2]air :

air CO2 concentration

FSV:

fraction of sky visible

g s :

stomatal conductance

g smax :

stomatal conductance at light saturation

L T :

fresh leaf thickness

PARcan :

PAR above the canopy

PARinst :

instantaneous PAR recorded during gas-exchange measurements

PARund :

estimated daily PAR at the forest understory

P N :

net photosynthetic rate

P Nmax :

light-saturated net photosynthetic rate

R:FR:

red to far-red ratio

RH:

air relative humidity

SLA:

specific leaf area

SPAD:

values from Minolta chlorophyll meter

T air :

air temperature

VPDund :

understory air vapor pressure deficit

References

  • Aliniaeifard, S., van Meeteren, U.: Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? — J. Exp. Bot. 64: 3551–3566, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer, J.S., Wong, S.C., Farquhar, G.D.: CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. — Plant Physiol. 114: 185–191, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buck, A.L.: New equations for computing vapor-pressure and enhancement factor. — J. Appl. Meteorol. 20: 1527–1532, 1981.

    Article  Google Scholar 

  • Buckley, T.N.: The control of stomata by water balance. — New Phytol. 168: 275–291, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Caird, M.A., Richards, J.H., Donovan, L.A.: Nighttime stomatal conductance and transpiration in C3 and C4 plants. — Plant Physiol. 143: 4–10, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camargo, M. A. B., Marenco, R.A.: Growth, leaf and stomatal traits of crabwood (Carapa guianensis aubl.) in central Amazonia. — Rev. Arvore 36: 7–16, 2012.

    Google Scholar 

  • Capers, R.S., Chazdon, R.L.: Rapid assessment of understory light availability in a wet tropical forest. — Agr. Forest Meteorol. 123: 177–185, 2004.

    Article  Google Scholar 

  • Casal, J.J.: Photoreceptor signaling networks in plant responses to shade. — Annu. Rev. Plant Biol. 64: 403–427, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Daley, M.J., Phillips, N.G.: Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. — Tree Physiol. 26: 411–419, 2006.

    Article  PubMed  Google Scholar 

  • Doughty, C.E., Goulden, M.L., Miller, S.D., da Rocha, H.R.: Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian Forest. — Geophys. Res. Lett. 33: 1–5, 2006, doi: 10.1029/2006GL026750.

    Article  Google Scholar 

  • Ferreira, S.J.F., Luizão, F.J., Mello-Ivo, W. et al.: [Soil physical properties after selective logging in Central Amazonia.] — Act. Amaz. 32: 449–466, 2002. [In Portuguese]

    Google Scholar 

  • Grantz, D.A.: Plant response to atmospheric humidity. — Plant Cell Environ. 13: 667–679, 1990.

    Article  Google Scholar 

  • Heintzen, C., Melzer, S., Fischer, R. et al.: A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNAbinding proteins in meristematic tissue. — Plant J. 5: 799–813, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Hozain, M.I., Salvucci, M.E., Fokar, M., Holaday, A.S.: The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. — Tree Physiol. 30: 32–44, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J.: Ultrastructure of bacterial penetration in plants. — Annu. Rev. Phytopathol. 24: 141–157, 1986.

    Article  Google Scholar 

  • Ilan, N., Moran, N., Schwartz, A.: The role of potassium channels in the temperature control of stomatal aperture. — Plant Physiol. 108: 1161–1170, 1995.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson, D. M., McCulloh, K. A., Woodruff, D. R, Meinzer, F. C.: Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? — Plant Sci. 195: 48–53, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Jones, H. G.: Stomatal control of photosynthesis and transpiration. — J. Exp. Bot. 49: 387–398, 1998.

    Article  Google Scholar 

  • Kojima, S., Shingle, D.L., Green, C.B.: Post-transcriptional control of circadian rhythms. — J. Cell Sci. 124: 311–320, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, A.S., Lakshmanan, V., Caplan, J.L. et al.: Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. — Plant J. 72: 694–706, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, T.: Guard cell photosynthesis and stomatal function. — New Phytol. 181: 13–34, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Magalhães, N.S., Marenco, R.A., Camargo, M.A.B.: Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings? — Sci. Agr. 71: 58–65, 2014.

    Article  Google Scholar 

  • Mansfield, T.A., Hetherington, A.M., Atkinson, C.J.: Some current aspects of stomatal physiology. — Annu. Rev. Plant Phys. 41: 55–75, 1990.

    Article  CAS  Google Scholar 

  • Manzoni, S., Vico, G., Katul, G. et al.: Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. — New Phytol. 198: 169–178, 2013.

    Article  PubMed  Google Scholar 

  • Mas, P., Yanovsky, M.J.: Time for circadian rhythms: plants get synchronized. — Curr. Opin. Plant Biol. 12: 574–579, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Melotto, M., Underwood, W., He, S.Y.: Role of stomata in plant innate immunity and foliar bacterial diseases. — Annu. Rev. Phytopathol. 46: 101–122, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes, K.R., Marenco, R.A.: Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. — Sci. Agr. 67: 624–632, 2010.

    Article  Google Scholar 

  • Mendes, K.R., Marenco, R.A., Magalhães, N.S.: [Growth and photosynthetic use efficiency of nitrogen and phosphorus in saplings of Amazonian tree species.] — Rev. Arvore 37: 707–716, 2013. [in Portuguese]

    Article  CAS  Google Scholar 

  • Mendgen, K., Hahn, M., Deising, H.: Morphogenesis and mechanisms of penetration by plant pathogenic fungi. — Ann. Rev. Phytopathol. 34: 367–386, 1996.

    Article  CAS  Google Scholar 

  • Miranda, E.J., Vourlitis, G.L., Priante, N. et al.: Seasonal variation in the leaf gas exchange of tropical forest trees in the rain forest-savanna transition of the southern Amazon Basin. — J. Trop. Ecol. 21: 451–460, 2005.

    Article  Google Scholar 

  • Nascimento, H.C.S., Marenco, R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. — Photosynthetica 51: 457-464, 2013.

  • Neilson, R.E., Jarvis, P.G.: Photosynthesis in sitka spruce (Picea sitchensis (Bong) Carr).VI: response of stomata to temperature. — J. Appl. Ecol. 12: 879–891, 1975.

    Article  CAS  Google Scholar 

  • Okamoto, M., Tanaka, Y., Abrams, S.R. et al.: High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. — Plant Physiol. 149: 825–834, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peak, D., Mott, K.A.: A new vapour-phase mechanism for stomatal responses to humidity and temperature. — Plant Cell Environ. 34: 162–178, 2011.

    Article  PubMed  Google Scholar 

  • Pearcy, R.W.: Sunflecks and photosynthesis in plant canopies. — Annu. Rev. Plant Phys. 41: 421–453, 1990.

    Article  CAS  Google Scholar 

  • Pearcy, R.W., Gross, L.J., He, D.: An improved dynamic model of photosynthesis for estimation of carbon gain in sun-fleck light regimes. — Plant Cell Environ. 20: 411–424, 1997.

    Article  Google Scholar 

  • Racker, E., Hinkle, P.C.: Effect of temperature on the function of a proton pump. — J. Membrane Biol. 17: 181–188, 1974.

    Article  CAS  Google Scholar 

  • Roth-Bejerano, N., Itai, C.: Involvement of phytochrome in stomatal movement: Effect of blue and red light. — Physiol. Plantarum 52: 201–206, 1981.

    Article  CAS  Google Scholar 

  • Shimazaki, K.I., Doi, M., Assmann, S.M., Kinoshita, T.: Light regulation of stomatal movement. — Annu. Rev. Plant. Biol. 58: 219–247, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Singsaas, E.L., Ort, D.R., DeLucia, E.H.: Diurnal regulation of photosynthesis in understory saplings. — New Phytol. 145: 39–49, 2000.

    Article  Google Scholar 

  • Song, X., Rampitsch, C., Soltani, B. et al.: Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. — Proteomics 11: 944–963. 2011.

    Article  CAS  PubMed  Google Scholar 

  • Stålfelt, M.G.: The effect of temperature on opening of the stomatal cells. — Physiol. Plantarum 15: 772–779, 1962.

    Article  Google Scholar 

  • Talbott, L.D., Zhu, J.X., Han, S.W., Zeiger, E.: Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. — Plant Cell Physiol. 43: 639–646, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Vialet-Chabrand, S., Dreyer, E., Brendel, O.: Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. — Plant Cell Environ. 36: 1529–1546, 2013.

    Article  PubMed  Google Scholar 

  • Wang, W., Barnaby, J.Y., Tada, Y. et al.: Timing of plant immune responses by a central circadian regulator. — Nature 470: 110–114, 2011.

  • Warren, C.R.: Soil water deficits decrease the internal nocductance to CO2 transfer but atmospheric water deficits do not. — J. Exp. Bot. 59: 327–334, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Webb, A.A.R.: The physiology of circadian rhythms in plants. — New Phytol. 160: 281–303, 2003.

    Article  CAS  Google Scholar 

  • Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Marenco.

Additional information

Acknowledgments: To the Ministry of Science, Technology and Innovation and to the Research Foundation for the State of the Amazon (FAPEAM; grant number: UA 6203164.12) for financial support. We also thank the National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarships.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenco, R.A., Nascimento, H.C.S. & Magalhães, N.S. Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment. Photosynthetica 52, 493–500 (2014). https://doi.org/10.1007/s11099-014-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0056-3

Additional key words

Navigation