Skip to main content
Log in

A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status

  • Original Paper
  • Published:
Photosynthetica

Abstract

Chlorophyll index and leaf nitrogen status (SPAD value) was incorporated into the nonrectangular hyperbola (NRH) equation for photosynthetic light-response (PLR) curve to establish a modified NRH equation to overcome the parameter variation. Ten PLR curves measured on rice leaves with different SPAD values were collected from pot experiments with different nitrogen (N) dosages. The coefficients of initial slope of the PLR curve and the maximum net photosynthetic rate in NRH equation increased linearly with the increase of leaf SPAD. The modified NRH equation was established by multiplying a linear SPAD-based adjustment factor with the NRH equation. It was sufficient in describing the PLR curves with unified coefficients for rice leaf with different SPAD values. SPAD value, as the indicator of leaf N status, could be used for modification of NRH equation to overcome the shortcoming of large coefficient variations between individual leaves with different N status. The performance of the SPAD-modified NRH equation should be further validated by data collected from different kinds of plants growing under different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE:

absolute error

Chl:

chlorophyll

N:

nitrogen

N1, N2:

the nitrogen fertilization rates, namely 300 (N1) and 200 (N2) kg(N) ha−1

P N :

net photosynthetic rate

P Nmax :

maximum net photosynthetic rate

PLR:

photosynthetic light response

PPFD:

photosynthetically photon flux density

R D :

dark respiration

RMSE:

root mean square error

α:

initial slope of the PLR curve

β:

parameter introduced by incorporating the SPAD-based factor into NRH equation

Θ:

parameter of the convexity of the PLR curve

References

  • Akhkha, A.: Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models. — J. Taibah Univ. Sci. 3: 49–57, 2010.

    Article  Google Scholar 

  • Akhkha, A., Reid, I., Clarke., Dominy, P.: Photosynthetic light response curve determined with the leaf oxygen electrode: minimization of errors and significance of the convexity term. — Planta 214: 135–141, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, V., Morales, A.C., Cruz, R.T. et al.: Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: A review. — Int. Rice Res. Notes 25: 4–8, 2000.

    Google Scholar 

  • Calama, R., Puértolas, J., Madrigal, G., Pardos, M.: Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. — Ecol. Model. 251: 9–21, 2013.

    Article  Google Scholar 

  • Chiarawipa, R., Wang, Y., Zhang, X.Z. et al.: Modeling light acclimation of photosynthetic response in different ages of vine leaves. — Acta Hort. 956: 255–260, 2012.

    Google Scholar 

  • Cook, M.G., Evans, L.T.: Nutrient responses of seedlings of wild and cultivated Oryza species. — Field Crop Res. 6: 205–218, 1983a.

    Article  Google Scholar 

  • Cook, M.G., Evans, L.T.: Some physiological aspects of the domestication and improvement of rice (Oryza spp.). — Field Crop Res. 6: 219–238, 1983b.

    Article  Google Scholar 

  • Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. — Oecologia 78: 9–19, 1989.

    Article  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Givnish, T.J., Montgomery, R.A., Goldstein, G.: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. — Am. J. Bot. 91: 228–246, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, M., Swain, D.K., Jha, M.K., Tewari, V.K.: Precision nitrogen management using chlorophyll meter for improving growth, productivity and N use efficiency of rice in subtropical climate. — J. Agric. Sci. 5: 254–266, 2013.

    Google Scholar 

  • Hanson, P.J., Mc Roberts, R.E., Isebrands, J.G., Dixon, R.K.: An optimal sampling strategy for determining CO2 exchange rate as a function of photosynthetic photon flux density. — Photosynthetica 21: 98–101, 1987.

    CAS  Google Scholar 

  • Huang, J.L., He, F., Cui, K.H. et al.: Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. — Field Crop Res. 105: 70–80, 2008.

    Article  Google Scholar 

  • Lachapelle, P.P., Shipley, B.: Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. — Ann. Bot. 109: 1149–1157, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambers, H., Chapin, F.S., Pons, T.L. Plant physiological Ecology. — Springer-Verlag, Berlin — Heidelberg — New York — London — Paris — Tokyo — Hong Kong 1998.

    Book  Google Scholar 

  • Leverenz, J.W.: Chlorophyll content and the light response curve of shade-adapted conifer needles. — Physiol. Plantarum 71: 20–29, 1987.

    Article  CAS  Google Scholar 

  • Ling, Q., Huang, W., Jarvis, P.: Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. — Photosynth. Res. 107: 209–214, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z.A, Yang, J.P, Yang, Z.C.: Using a chlorophyll meter to estimate tea leaf chlorophyll and nitrogen contents. — J. Soil Sci. Plant Nutr. 12: 339–348, 2012.

    Article  Google Scholar 

  • Loh, F.C.W., Grabosky, J.C., Bassuk, N.L.: Using the SPAD-502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. — HortTechnology 12: 682–686, 2002.

    CAS  Google Scholar 

  • Marino, G., Aqil, M., Shipley, B.: The leaf economics spectrum and the prediction of photosynthetic light-response curves. — Funct. Ecol. 24: 263–272, 2010.

    Article  Google Scholar 

  • Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. — Photosynth. Res. 46: 467–472, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. — J. Exp. Bot. 120: 29–39, 1980.

    Article  Google Scholar 

  • Marschall, M., Proctor, M.C.F.: Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. — Ann. Bot. 94: 593–603, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K. et al.: Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. — Plant Cell Physiol. 45: 1870–1874, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Murchie, E.H., Hubbart, S., Chen, Y.Z., Peng, S.B., Horton, P.: Acclimation of rice photosynthesis to irradiance under field conditions. — Plant Physiol. 130: 1999–2010, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milroy, S.P., Bange, M.P.: Nitrogen and light responses of cotton photosynthesis and implications for crop growth. — Crop Sci. 43: 904–913, 2003.

    Article  Google Scholar 

  • Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T., Horie, T.: A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. — Ann. Bot. 99: 265–273, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, S.B., Laza, M.R.C., Garcia, F.V., Cassman, K.G.: Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. — Commun. Soil Sci. Plan. 26: 927–935, 1995.

    Article  CAS  Google Scholar 

  • Peng, S.B., Cassman, K.G., Kropff, M.J.: Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics. — Crop Sci. 35: 1627–1630, 1995.

    Article  Google Scholar 

  • Peng, S., Garcia, F.V., Laza, R.C. et al.: Increased N-use efficiency using a chlorophyll meter on high yielding irrigation rice. — Field Crop Res. 47: 243–252, 1996.

    Article  Google Scholar 

  • Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M.: How to evaluate models: Observed vs. predicted or predicted vs. observed? — Ecol. Model. 216: 316–322, 2008.

    Article  Google Scholar 

  • Prado, C.H.B.A., De Moraes, J.A.P.V.: Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. — Photosynthetica 33: 103–112, 1997.

    Article  Google Scholar 

  • Prieto, J.A., Giorgi, E.G., Pena J.P.: Modelling photosyntheticlight response on Syrah leaves with different exposure. — Vitis 49: 145–146, 2010.

    Google Scholar 

  • Quero, J.L., Villar, R., Marañón, T.: Leaf traits and photosynthesis light response of Quercus suber seedlings grown in a combination of light and water regimes. — In: Vázquez-Piqué, J.; Pereira, H.; González-Pérez, A. (ed.): Suberwood, new Challenges for the Integration of cork Oak Forests and Products. Pp. 75–84. Universidad de Huelva, Huelva 2008.

    Google Scholar 

  • Rosati, A., Esparza, G., Dejong, T.M., Pearcy, R.W.: Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. — Tree Physiol. 19: 173–180, 1999.

    Article  PubMed  Google Scholar 

  • Singh, B., Singh, Y., Ladha, J.K. et al.: Chlorophyll meter- and leaf color chart-based nitrogen management for rice and wheat in northwestern India. — Agron. J. 94: 821–829, 2001.

    Article  Google Scholar 

  • Swain, D.K., Sandip, S.J.: Development of SPAD values of medium- and long-duration rice variety for site-specific nitrogen management. — J. Agron. 9: 38–44, 2010.

    Article  Google Scholar 

  • Thornley, J.H.M.: Mathematical Models in Plant Physiology a Quantitative Approach to Problems in Plant and Crop Physiology. — Academic Press, London — New York 1976.

    Google Scholar 

  • Thornley, J.H.M.: Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. — Ann Bot. 81: 421–430, 1998.

    Article  Google Scholar 

  • Uddling, J., Gelang-Alfredsson, J.., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. — Photosynth. Res. 91: 37–46, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C.W., Reeves, D.W., Himelrick, D.G.: Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: a review. — P. Ag. Soc. NZ 23: 1–9, 1993.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M. et al.: The worldwide leaf economics spectrum. — Nature 428: 821–827, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H.L., Gauthier, L., Gosselin, A.: Effects of fertigation management on growth and photosynthesis of tomato plants in peat, rockwool and NFI. — Sci. Hortic.-Amsterdam 63:11-20, 1995.

    Google Scholar 

  • Xu, H.L., Gauthier, L., Desjardins, Y., Gosselin, A.: Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants. — Photosynthetica 33: 113–123, 1997.

    Article  CAS  Google Scholar 

  • Ye, Z.-P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. — Photosynthetica 45: 637–640, 2007.

    Article  CAS  Google Scholar 

  • Ye, Z.-P., Suggett, D.J., Robakowski, P., Kang, H.J.: A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. — New Phytol. 199: 110–120, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.-Y., Wang, X.-H., Chen, Y., Xu, D.-Q.: Determinant of photosynthetic capacity in rice leaves under ambient air conditions. — Photosynthetica 43: 273–276, 2005.

    Article  Google Scholar 

  • Zhou, Y.H., Lam, H.M., Zhang, J.H.: Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. — J. Exp. Bot. 58: 1207–1217, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Xu.

Additional information

Acknowledgements: The research was financially supported by the National Natural Science Foundation of China (No. 51209065; 51179051), by the Fundamental Research Funds for the Central Universities (No. 2012B07514), and Qinglan Project of Jiangsu Province and Advanced Science and Technology Innovation Team in Colleges and Universities in Jiangsu Province.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J.Z., Yu, Y.M., Peng, S.Z. et al. A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status. Photosynthetica 52, 117–123 (2014). https://doi.org/10.1007/s11099-014-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0011-3

Additional key words

Navigation