Skip to main content
Log in

Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes

  • Published:
Photosynthetica

Abstract

One broad-leaved pioneer tree, Alnus formosana, two broad-leaved understory shrubs, Ardisia crenata and Ardisia cornudentata, and four ferns with different light adaptation capabilities (ranked from high to low, Pyrrosia lingus, Asplenium antiquum, Diplazium donianum, Archangiopteris somai) were used to elucidate the light responses of photosynthetic rate and electron transport rate (ETR). Pot-grown materials received up to 3 levels of light intensity, i.e., 100%, 50% and 10% sunlight. Both gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously by an equipment under constant temperature and 7 levels (0–2,000 μmol m−2 s−1) of photosynthetic photon flux density (PPFD). Plants adapted to-or acclimated to high light always had higher light-saturation point and maximal photosynthetic rate. Even materials had a broad range of photosynthetic capacity [maximal photosynthetic rate ranging from 2 to 23 μmol(CO2) m−2 s−1], the ratio of ETR to gross photosynthetic rate (P G) was close for A. formosana and the 4 fern species when measured under constant temperature, but the PPFD varied. In addition, P. lingus and A. formosana grown under 100% sunlight and measured at different seasonal temperatures (15, 20, 25, and 30°C) showed increased ETR/P G ratio with increasing temperature and could be fitted by first- and second-order equations, respectively. With this equation, estimated and measured P G were closely correlated (r 2 = 0.916 and r 2 = 0.964 for P. lingus and A. formosana, respectively, p<0.001). These equations contain only the 2 easily obtained dynamic indicators, ETR and leaf temperature. Therefore, for some species with near ETR/P G ratio in differential levels of PPFD, these equations could be used to simulate dynamic variation of leaf scale photosynthetic rate under different temperature and PPFD conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

ETR:

electron transport rate

Fv/Fm :

potential quantum efficiency of PSII

g s :

stomatal conductance

P G :

gross photosynthetic rate

P N :

net photosynthetic CO2-exchange rate

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

ΦPSII :

PSII efficiency

References

  • Adams, W.W., III, Zarter, C.R., Ebbert, V., Demmig-Adams, B.: Photoprotective strategies of overwintering evergreens. — BioScience 54: 41–49, 2004.

    Article  Google Scholar 

  • Aleric, K.M., Kirkman, L.K.: Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. — Am. J. Bot. 92: 682–689, 2005.

    Article  PubMed  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Phys. Plant Mol. Biol. 50: 601–639, 1999.

    Article  CAS  Google Scholar 

  • Bazzaz, F.A., Carlson, R.W.: Photosynthetic acclimation to variability in the light environment of early and late successional plants. — Oecologia 54: 313–316, 1982.

    Article  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Blankenship, R.E.: Photosynthesis: The light reactions. — In: Taiz, L., Zeiger, E. (ed.): Plant Physiology 4rd. Pp. 126–158. Sinauer Associates Inc. Publ., Sunderland 2006.

    Google Scholar 

  • Boardman, N.K.: Comparative photosynthesis of sun and shade plants. — Annu. Rev. Plant Physiol. 28: 355–377, 1977.

    Article  CAS  Google Scholar 

  • Brodribb, T.J., McAdam, S.A.M., Jordan, G.J., Field, T.S.: Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. — New Phytol. 165: 839–846, 2005.

    Article  PubMed  Google Scholar 

  • Cavender-Bares, J., Bazzaz, F.A.: From leaves to ecosystems: Using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll Fluorescence: A Signature of Photosynthesis. Pp. 737–755. Kluwer Academic Publ., Dordrecht 2004.

    Google Scholar 

  • Chabot, B.F., Chabot, J.F.: Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. — Oecologia 26: 363–377, 1977.

    Article  Google Scholar 

  • Cheng, L., Fuchigami, L.H., Breen, P.J.: The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. — J. Exp. Bot. 52: 1865–1872, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Coopman, R.E., Reyes-Díaz, M., Briceño, V.F., Corcuera, L.J., Cabrera, H.M., Bravo, L.A.: Changes during early development in photosynthetic light acclimation capacity explain the shade to sun transition in Nothofagus nitida. — Tree Physiol. 28: 1561–1571, 2008.

    Article  PubMed  Google Scholar 

  • Cornic, G., Briantais, J.M.: Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. — Planta 183: 178–184, 1991.

    Article  CAS  Google Scholar 

  • D’Ambrosio, N., Arena, C., Virzo De Santo, A.: Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. — Environ. Exp. Bot. 55: 248–257, 2006.

    Article  Google Scholar 

  • Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., Lu, H.: Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. — Environ. Exp. Bot. 65: 177–182, 2009.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. — Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III, Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plant. 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Earl, H.J., Tollenaar, M.: Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three maize (Zea mays L.) hybrids. — Photosynth. Res. 58: 245–257, 1998.

    Article  CAS  Google Scholar 

  • Franco, A., Lüttge, U.: Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. — Oecologia 131: 356–365, 2002.

    Article  Google Scholar 

  • Givnish, T.J.: Adaptation to sun and shade: A whole-plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.

    Article  Google Scholar 

  • Ghannoum, O., Conroy, J.P., Driscoll, S.P., Paul, M.J., Foyer, C.H., Lawlor, D.W.: Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. — New Phytol. 159: 599–608, 2003.

    Article  CAS  Google Scholar 

  • Griffin, J.J., Ranney, T.G., Pharr, D.M.: Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance. — J. Amer. Soc. Hort. Sci. 129: 46–53, 2004.

    Google Scholar 

  • Hall, N.P., Keys, A.J.: Temperature dependence of the enzymic carboxylation and oxygenation of ribulose 1,5-bisphosphate in relation to effects of temperature on photosynthesis. — Plant Physiol. 72: 945–948, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Haworth, M., Elliott-Kingston, C., McElwain, J.C.: Stomatal control as a driver of plant evolution. — J. Exp. Bot. 62: 2419–2423, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hölscher, D., Leuschner, C., Bohman, K., Hagemeier, M., Juhrbandt, J., Tjitrosemito, S.: Leaf gas exchange of trees in old-growth and young secondary forest stands in Sulawesi, Indonesia. — Trees 20: 278–285, 2006.

    Article  Google Scholar 

  • Huang, J., Boerner, R.E.J., Rebbeck, J.: Ecophysiological responses of two herbaceous species to prescribed burning, alone or in combination with overstory thinning. — Amer. J. Bot. 94: 755–763, 2007.

    Article  Google Scholar 

  • Kakani, V.G., Surabhi, G.K., Reddy, K.R.: Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. — Photosynthetica 46: 420–430, 2008.

    Article  CAS  Google Scholar 

  • Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A., Hirose, T.: The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. — Plant Cell Physiol. 44: 318–325, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Krall, J.P., Edwards, G.E.: Quantum yields of photosystem II electron transport and carbon dioxide fixation in C4 plants. — Aust. J. Plant Physiol. 17: 579–588, 1990.

    Article  CAS  Google Scholar 

  • Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. — Physiol. Plant. 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kubien, D.S., Sage, R.F.: Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes. — Plant Cell Environ. 27: 907–916, 2004.

    Article  CAS  Google Scholar 

  • Lambers, H., Chapin, F.S., Pons, T.L.: Plant Physiological Ecology. — Springer, New York 1998.

    Google Scholar 

  • Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. — Nature 403: 391–395, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lüttge, U.: Cyanobacterial Tintenstrich communities and their ecology. — Naturwissenschaften 84: 526–534, 1997.

    Article  Google Scholar 

  • Makino, A., Miyake, C., Yokota, A.: Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. — Plant Cell Physiol. 43: 1017–1026, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C., Okamura, M.: Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. — Plant Cell Physiol. 44: 457–462, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Oberhuber, W., Dai, Z.Y., Edwards, G.E.: Light dependence of quantum yields of Photosystem II and CO2 fixation in C3 and C4 plants. — Photosynth. Res. 35: 265–274, 1993.

    Article  CAS  Google Scholar 

  • Oberhuber, W., Edwards, G.E.: Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. — Plant Physiol. 101: 507–512, 1993.

    PubMed  CAS  Google Scholar 

  • Pearcy, R.W., Sims, D.A.: (1994) Photosynthetic acclimation to changing light environments: Scaling from the leaf to the whole plant. — In: Caldwell, M.M., Pearcy, R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground. Pp. 145–174. Academic Press, San Diego — NewYork — Boston — London — Sydney -Tokyo — Toronto 1994.

    Google Scholar 

  • Pérez-Torres, E., Bravo, L.A., Corcuera, L.J., Johnson, G.N.: Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. — Physiol. Plant. 130: 185–194, 2007.

    Article  Google Scholar 

  • Peterson, R.B.: Regulation of electron transport in photosystems I and II in C3, C3-C4, and C4 species of Panicum in response to changing irradiance and O2 levels. — Plant Physiol. 105: 349–356, 1994.

    PubMed  CAS  Google Scholar 

  • Ripley, B.S., Gilbert, M.E., Ibrahim, D.G., Osborne, C.P.: Drought constraints on C4 photosynthesis: Stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. — J. Exp. Bot. 58: 1351–1363, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J.M.: Nitrite photoreduction in vivo is inhibited by oxygen. — Plant Physiol. 92: 862–865, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Stuhlfauth, T., Scheuermann, R., Fock, H.P.: Light energy dissipation under water stress conditions: Contribution of reassimilation and evidence for additional processes. — Plant Physiol. 92: 1053–1061, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G.C., Zeng, X.P., Liu, X.J., Zhao, P.: Effects of moderate high-temperature stress on photosynthesis in three saplings of the constructive tree species of subtropical forest. — Acta Ecol. Sin. 27: 1283–1290, 2007.

    Article  CAS  Google Scholar 

  • Valladares, F., Pearcy, R.W.: Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. — Plant Cell Environ. 20: 25–36, 1997.

    Article  Google Scholar 

  • Vavasseur, A., Raghavendra, A.S.: Guard cell metabolism and CO2 sensing. — New Phytol. 165: 665–682, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, A.S., Adams, W.W., III, Demmig-Adams, B.: The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. — Oecologia 118: 277–287, 1999.

    Article  Google Scholar 

  • Weng, J.H.: Relationship between allocation of absorbed light energy in PSII and photosynthetic rates of C3 and C4 plants. — Acta Physiol. Plant. 31: 639–647, 2009.

    Article  CAS  Google Scholar 

  • Yu, Q., Zhang, Y.-Q., Liu, Y.-F., Shi, P.-L.: Simulation of the stomatal conductance of winter wheat in response to light temperature and CO2 changes. — Ann. Bot. 93: 435–441, 2004.

    Article  PubMed  Google Scholar 

  • Zhang, S.B., Hu, H., Xu, K., Li, Z.R., Yang, Y.P.: Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. — J. Plant Physiol. 164: 611–620, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -H. Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, S.L., Chen, C.W., Huang, H.W. et al. Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes. Photosynthetica 50, 206–214 (2012). https://doi.org/10.1007/s11099-012-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0027-5

Additional key words

Navigation